P67 PI 3-kinase activation through c-Src-dependent tyrosine phosphorylation of PITKAP/XB130, a novel binding partner of a PI 3-kinase p85 regulatory subunit, plays novel roles in priming cells to IGF

2010 ◽  
Vol 20 ◽  
pp. S62-S63
Author(s):  
D. Yamanaka ◽  
T. Akama ◽  
T. Fukushima ◽  
K. Chida ◽  
S. Minami ◽  
...  
2002 ◽  
Vol 13 (2) ◽  
pp. 480-492 ◽  
Author(s):  
Tom D. Wolkow ◽  
Tamar Enoch

Fission yeast Rad3 is a member of a family of phosphoinositide 3-kinase -related kinases required for the maintenance of genomic stability in all eukaryotic cells. In fission yeast, Rad3 regulates the cell cycle arrest and recovery activities associated with the G2/M checkpoint. We have developed an assay that directly measures Rad3 kinase activity in cells expressing physiological levels of the protein. Using the assay, we demonstrate directly that Rad3 kinase activity is stimulated by checkpoint signals. Of the five other G2/M checkpoint proteins (Hus1, Rad1, Rad9, Rad17, and Rad26), only Rad26 was required for Rad3 kinase activity. Because Rad26 has previously been shown to interact constitutively with Rad3, our results demonstrate that Rad26 is a regulatory subunit, and Rad3 is the catalytic subunit, of the Rad3/Rad26 kinase complex. Analysis of Rad26/Rad3 kinase activation in rad26.T12, a mutant that is proficient for cell cycle arrest, but defective in recovery, suggests that these two responses to checkpoint signals require quantitatively different levels of kinase activity from the Rad3/Rad26 complex.


1997 ◽  
Vol 273 (5) ◽  
pp. E1014-E1023 ◽  
Author(s):  
Jacob E. Friedman ◽  
Tatsuya Ishizuka ◽  
Sha Liu ◽  
Craig J. Farrell ◽  
David Bedol ◽  
...  

Insulin resistance is associated with both obesity and hypertension. However, the cellular mechanisms of insulin resistance in genetic models of obese-hypertension have not been identified. The objective of the present study was to investigate the effects of genetic obesity on a background of inherited hypertension on initial components of the insulin signal transduction pathway and glucose transport in skeletal muscle and liver. Oral glucose tolerance testing in SHROB demonstrated a sustained postchallenge elevation in plasma glucose at 180 and 240 min compared with lean spontaneously hypertensive rat (SHR) littermates, which is suggestive of glucose intolerance. Fasting plasma insulin levels were elevated 18-fold in SHROB. The rate of insulin-stimulated 3- O-methylglucose transport was reduced 68% in isolated epitrochlearis muscles from the SHROB compared with SHR. Insulin-stimulated tyrosine phosphorylation of the insulin receptor β-subunit and insulin receptor substrate-1 (IRS-1) in intact skeletal muscle of SHROB was reduced by 36 and 23%, respectively, compared with SHR, due primarily to 32 and 60% decreases in insulin receptor and IRS-1 protein expression, respectively. The amounts of p85α regulatory subunit of phosphatidylinositol-3-kinase and GLUT-4 protein were reduced by 28 and 25% in SHROB muscle compared with SHR. In the liver of SHROB, the effect of insulin on tyrosine phosphorylation of IRS-1 was not changed, but insulin receptor phosphorylation was decreased by 41%, compared with SHR, due to a 30% reduction in insulin receptor levels. Our observations suggest that the leptin receptor mutation fak imposed on a hypertensive background results in extreme hyperinsulinemia, glucose intolerance, and decreased expression of postreceptor insulin signaling proteins in skeletal muscle. Despite these changes, hypertension is not exacerbated in SHROB compared with SHR, suggesting these metabolic abnormalities may not contribute to hypertension in this model of Syndrome X.


1992 ◽  
Vol 287 (1) ◽  
pp. 269-276 ◽  
Author(s):  
M R Gold ◽  
J S Sanghera ◽  
J Stewart ◽  
S L Pelech

Cross-linking of membrane immunoglobulin (mIg), the B lymphocyte antigen receptor, with anti-receptor antibodies stimulates tyrosine phosphorylation of a number of proteins, including one of 42 kDa. Proteins with a similar molecular mass are tyrosine-phosphorylated in response to receptor stimulation in other cell types and have been identified as serine/threonine kinases, termed mitogen-activated protein (MAP) kinases or extracellular signal-regulated kinases (ERKs). The MAP kinases constitute a family of related kinases, at least three of which have molecular masses of 40-45 kDa. In this paper we show that mIg cross-linking stimulated the myelin basic protein phosphotransferase activity characteristic of MAP kinase in both mature and immature murine B cell lines. This enzyme activity co-purified on three different columns with a 42 kDa protein that was tyrosine-phosphorylated (pp42) in response to mIg cross-linking and which reacted with a panel of anti-(MAP kinase) antibodies. Although immunoblotting with the anti-(MAP kinase) antibodies showed that these B cell lines expressed both 42 kDa and 44 kDa forms of MAP kinase, only the 42 kDa form was activated and tyrosine-phosphorylated to a significant extent. Activation of protein kinase C (PKC) with phorbol esters also resulted in selective tyrosine phosphorylation and activation of the 42 kDa MAP kinase. This suggested that mIg-induced MAP kinase activation could be due to stimulation of PKC by mIg. However, mIg-stimulated MAP kinase activation and pp42 tyrosine phosphorylation was only partially blocked by a PKC inhibitor, the staurosporine analogue Compound 3. In contrast, Compound 3 completely blocked the ability of phorbol esters to stimulate MAP kinase activity and induce tyrosine phosphorylation of pp42. Thus mIg may activate MAP kinase by both PKC-dependent and -independent mechanisms.


2008 ◽  
Vol 19 (3) ◽  
pp. 1032-1045 ◽  
Author(s):  
Jennifer P. Bharucha ◽  
Jennifer R. Larson ◽  
Lu Gao ◽  
Lisa K. Daves ◽  
Kelly Tatchell

The catalytic subunit of protein phosphatase type 1 (PP1) has an essential role in mitosis, acting in opposition to the Ipl1/Aurora B protein kinase to ensure proper kinetochore-microtubule interactions. However, the regulatory subunit(s) that completes the PP1 holoenzyme that functions in this capacity is not known. We show here that the budding yeast Ypi1 protein is a nuclear protein that functions with PP1 (Glc7) in this mitotic role. Depletion of cellular Ypi1 induces mitotic arrest due to activation of the spindle checkpoint. Ypi1 depletion is accompanied by a reduction of nuclear PP1 and by loss of nuclear Sds22, a Glc7 binding partner that is found in a ternary complex with Ypi1 and Glc7. Expression of a Ypi1 variant that binds weakly to PP1 also activates the spindle checkpoint and suppresses the temperature sensitivity of an ipl1-2 mutant. These results, together with genetic interactions among YPI1, GLC7, and SDS22 mutants, indicate that Ypi1 and Sds22 are positive regulators of the nuclear Glc7 activity that is required for mitosis.


2010 ◽  
Vol 45 (5) ◽  
pp. 329-340 ◽  
Author(s):  
Yuka Toyoshima ◽  
Reiko Tokita ◽  
Yoichiro Ohne ◽  
Fumihiko Hakuno ◽  
Tadashi Noguchi ◽  
...  

This study was undertaken to elucidate the effects of dietary protein deprivation on glucose metabolism and hepatic insulin signaling in rats. The results of glucose and pyruvate tolerance tests in rats fed with a 12% casein diet (12C) and a protein-free diet (PF) indicated that protein deprivation enhanced clearance of blood glucose and suppressed gluconeogenesis. Correspondingly, the mRNA level of hepatic phosphoenolpyruvate carboxykinase, a key gluconeogenic enzyme, was suppressed by dietary protein deprivation. In PF-fed rats, total tyrosine phosphorylation of insulin receptor (IR) in the liver induced by insulin injection was enhanced compared with 12C pair-fed rats due to an increase in IR protein level. In addition, protein deprivation caused an increase in protein levels of IR substrate 1 (IRS1) and IRS2, leading to the marked enhancement of insulin-induced tyrosine phosphorylation of IRS2 and its binding to the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K). Based on these results, we conclude that protein deprivation suppresses gluconeogenesis by a mechanism primarily mediated by the enhancement of the insulin signals through the IR/IRS/PI3K/mammalian target of rapamycin complex 1 pathway in the liver. Taken together with our previous report, these findings suggest that tissue-specific potentiation of insulin action in the liver and the skeletal muscle plays important roles in maintaining glucose homeostasis even when energy usage is reduced by dietary protein deprivation.


2008 ◽  
Vol 28 (20) ◽  
pp. 6462-6472 ◽  
Author(s):  
Michelle D. Larrea ◽  
Jiyong Liang ◽  
Thiago Da Silva ◽  
Feng Hong ◽  
Shan H. Shao ◽  
...  

ABSTRACT p27 mediates Cdk2 inhibition and is also found in cyclin D1-Cdk4 complexes. The present data support a role for p27 in the assembly of D-type cyclin-Cdk complexes and indicate that both cyclin D1-Cdk4-p27 assembly and kinase activation are regulated by p27 phosphorylation. Prior work showed that p27 can be phosphorylated by protein kinase B/Akt (PKB/Akt) at T157 and T198. Here we show that PKB activation and the appearance of p27pT157 and p27pT198 precede p27-cyclin D1-Cdk4 assembly in early G1. PI3K/PKB inhibition rapidly reduced p27pT157 and p27pT198 and dissociated cellular p27-cyclin D1-Cdk4. Mutant p27 allele products lacking phosphorylation at T157 and T198 bound poorly to cellular cyclin D1 and Cdk4. Cellular p27pT157 and p27pT198 coprecipitated with Cdk4 but were not detected in Cdk2 complexes. The addition of p27 to recombinant cyclin D1 and Cdk4 led to cyclin D1-Cdk4-p27 complex formation in vitro. p27 phosphorylation by PKB increased p27-cyclin D1-Cdk4 assembly in vitro but yielded inactive Cdk4. In contrast, Src pretreatment of p27 did not affect p27-cyclin D1-Cdk4 complex formation. However, Src treatment led to tyrosine phosphorylation of p27 and catalytic activation of assembled cyclin D1-Cdk4-p27 complexes. Thus, while PKB-dependent p27 phosphorylation appears to increase cyclin D1-Cdk4-p27 assembly or stabilize these complexes in vitro, cyclin D1-Cdk4-p27 activation requires the tyrosine phosphorylation of p27. Constitutive activation of PKB and Abl or Src family kinases in cancers would drive p27 phosphorylation, increase cyclin D1-Cdk4 assembly and activation, and reduce the cyclin E-Cdk2 inhibitory function of p27. Combined therapy with both Src and PI3K/PKB inhibitors may reverse this process.


1998 ◽  
Vol 9 (5) ◽  
pp. 1093-1105 ◽  
Author(s):  
Leila Khamzina ◽  
Pierre Borgeat

The molecular mechanism of hepatic cell growth and differentiation is ill defined. In the present study, we examined the putative role of tyrosine phosphorylation in normal rat liver development and in an in vitro model, the α-fetoprotein-producing (AFP+) and AFP-nonproducing (AFP−) clones of the McA-RH 7777 rat hepatoma. We demonstrated in vivo and in vitro that the AFP+ phenotype is clearly associated with enhanced tyrosine phosphorylation, as assessed by immunoblotting and flow cytometry. Moreover, immunoprecipitation of proteins with anti-phosphotyrosine antibody showed that normal fetal hepatocytes expressed the same phosphorylation pattern as stable AFP+clones and likewise for adult hepatocytes and AFP− clones. The tyrosine phosphorylation of several proteins, including the β-subunit of the insulin receptor, insulin receptor substrate-1, p85 regulatory subunit of phosphatidylinositol-3-kinase, andras-guanosine triphosphatase-activating protein, was observed in AFP+ clones, whereas the same proteins were not phosphorylated in AFP− clones. We also observed that fetal hepatocytes and the AFP+ clones express 4 times more of the insulin receptor β-subunit compared with adult hepatocytes and AFP− clones and, accordingly, that these AFP+clones were more responsive to exogenous insulin in terms of protein tyrosine phosphorylation. Finally, growth rate in cells of AFP+ clones was higher than that measured in cells of AFP− clones, and inhibition of phosphatidylinositol-3-kinase by LY294002 and Wortmannin blocked insulin- and serum-stimulated DNA synthesis only in cells of AFP+ clones. These studies provide evidences in support of the hypothesis that signaling via insulin prevents hepatocyte differentiation by promoting fetal hepatocyte growth.


Sign in / Sign up

Export Citation Format

Share Document