HIV-1 and the brain: connections between HIV-1-associated dementia, neuropathology and neuroimmunology

2002 ◽  
Vol 4 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Diane M. Lawrence ◽  
Eugene O. Major
Keyword(s):  
2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


2014 ◽  
Vol 9 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Danya Glaser

Purpose – The purpose of this paper is to outline brain structure and development, the relationship between environment and brain development and implications for practice. Design/methodology/approach – The paper is based on a selected review of the literature and clinical experience. Findings – While genetics determine the sequence of brain maturation, the nature of brain development and functioning is determined by the young child's caregiving environment, to which the developing brain constantly adapts. The absence of input during sensitive periods may lead to later reduced functioning. There is an undoubted immediate equivalence between every mind function – emotion, cognition, behaviour and brain activity, although the precise location of this in the brain is only very partially determinable, since brain connections and function are extremely complex. Originality/value – This paper provides an overview of key issues in neurodevelopment relating to the development of young children, and implications for policy and practice.


1999 ◽  
Vol 4 (3) ◽  
pp. 203-205 ◽  
Author(s):  
P B Tran ◽  
O Meucci ◽  
R J Miller
Keyword(s):  

2018 ◽  
Vol 17 (3-4) ◽  
pp. 391-411 ◽  
Author(s):  
Elham Askari ◽  
Seyed Kamaledin Setarehdan ◽  
Ali Sheikhani ◽  
Mohammad Reza Mohammadi ◽  
Mohammad Teshnehlab

Author(s):  
Ian J. Deary

‘What do more intelligent brains look like?’ considers a study that used data from the Lothian Birth Cohort 1936 to test the strength of the correlation between the general intelligence scores of the participants and different measures of their brain’s structure. Magnetic resonance imaging was used to measure total brain volume, brain cortical thickness, brain white matter integrity (or health), and brain white matter hyperintensities. The study showed that people who have higher general intelligence tend to have larger brains, thicker grey matter on the surface of the brain, and healthier white matter brain connections. The associations are not strong, but some aspects of brain structure do relate to intelligence test scores.


2020 ◽  
Vol 8 (11) ◽  
pp. 1643
Author(s):  
Frank Denaro ◽  
Francesca Benedetti ◽  
Myla D. Worthington ◽  
Giovanni Scapagnini ◽  
Christopher C. Krauss ◽  
...  

HIV noninfectious comorbidities (NICMs) are a current healthcare challenge. The situation is further complicated as there are very few effective models that can be used for NICM research. Previous research has supported the use of the HIV-1 transgenic rat (HIV-1TGR) as a model for the study of HIV/AIDS. However, additional studies are needed to confirm whether this model has features that would support NICM research. A demonstration of the utility of the HIV-1TGR model would be to show that the HIV-1TGR has cellular receptors able to bind HIV proteins, as this would be relevant for the study of cell-specific tissue pathology. In fact, an increased frequency of HIV receptors on a specific cell type may increase tissue vulnerability since binding to HIV proteins would eventually result in cell dysfunction and death. Evidence suggests that observations of selective cellular vulnerability in this model are consistent with some specific tissue vulnerabilities seen in NICMs. We identified CXCR4-expressing cells in the brain, while specific markers for neuronal degeneration demonstrated that the same neural types were dying. We also confirm the presence of gp120 and Tat by immunocytochemistry in the spleen, as previously reported. However, we observed very rare positive cells in the brain. This underscores the point that gp120, which has been reported as detected in the sera and CSF, is a likely source to which these CXCR4-positive cells are exposed. This alternative appears more probable than the local production of gp120. Further studies may indicate some level of local production, but that will not eliminate the role of receptor-mediated pathology. The binding of gp120 to the CXCR4 receptor on neurons and other neural cell types in the HIV-1TGR can thus explain the phenomena of selective cell death. Selective cellular vulnerability may be a contributing factor to the development of NICMs. Our data indicate that the HIV-1TGR can be an effective model for the studies of HIV NICMs because of the difference in the regional expression of CXCR4 in rat tissues, thus leading to specific organ pathology. This also suggests that the model can be used in the development of therapeutic options.


2009 ◽  
Vol 157 (7) ◽  
pp. 1225-1231 ◽  
Author(s):  
Khalid Benamar ◽  
Menachem Yondorf ◽  
Ellen B Geller ◽  
Toby K Eisenstein ◽  
Martin W Adler

Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 426 ◽  
Author(s):  
Liana V. Basova ◽  
James P. Kesby ◽  
Marcus Kaul ◽  
Svetlana Semenova ◽  
Maria Cecilia Garibaldi Marcondes

Methamphetamine (Meth) abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein, trans-activator of transcription (Tat), has been described to induce changes in brain gene transcription that can result in impaired reward circuitry, as well as in inflammatory processes. In transgenic mice with doxycycline-induced Tat protein expression in the brain, i.e., a mouse model of neuroHIV, we tested global gene expression patterns induced by Meth sensitization. Meth-induced locomotor sensitization included repeated daily Meth or saline injections for seven days and Meth challenge after a seven-day abstinence period. Brain samples were collected 30 min after the Meth challenge. We investigated global gene expression changes in the caudate putamen, an area with relevance in behavior and HIV pathogenesis, and performed pathway and transcriptional factor usage predictions using systems biology strategies. We found that Tat expression alone had a very limited impact in gene transcription after the Meth challenge. In contrast, Meth-induced sensitization in the absence of Tat induced a global suppression of gene transcription. Interestingly, the interaction between Tat and Meth broadly prevented the Meth-induced global transcriptional suppression, by maintaining regulation pathways, and resulting in gene expression profiles that were more similar to the controls. Pathways associated with mitochondrial health, initiation of transcription and translation, as well as with epigenetic control, were heavily affected by Meth, and by its interaction with Tat in anti-directional ways. A series of systems strategies have predicted several components impacted by these interactions, including mitochondrial pathways, mTOR/RICTOR, AP-1 transcription factor, and eukaryotic initiation factors involved in transcription and translation. In spite of the antagonizing effects of Tat, a few genes identified in relevant gene networks remained downregulated, such as sirtuin 1, and the amyloid precursor protein (APP). In conclusion, Tat expression in the brain had a low acute transcriptional impact but strongly interacted with Meth sensitization, to modify effects in the global transcriptome.


2012 ◽  
Vol 5 ◽  
pp. IJTR.S10627 ◽  
Author(s):  
H. Baran ◽  
J.A. Hainfellner ◽  
B. Kepplinger

Kynurenic acid, an intermediate metabolite of L-kynurenine, is a competitive antagonist of inotropic excitatory amino acid (EAA) receptors as well as a non competitive antagonist of 7 alpha nicotine cholinergic receptors and its involvement in memory deficit and cognition impairment has been suggested. Alterations of kynurenic acid metabolism in the brain after HIV-1 (human immunodeficiency virus type-1) infection have been demonstrated. The present study evaluates the biosynthetic machinery of kynurenic acid e.g. the content of L-kynurenine and kynurenic acid, as well as the activity of enzymes synthesizing kynurenic acid, kynurenine aminotransferase I (KAT I) and kynurenine aminotransferase II (KAT II) in the frontal cortex and cerebellum of HIV-1 infected patients in relation to different types of pathology classified as follows: HIV in brain (HIV); opportunistic infection (OPP); infarction of brain (INF); malignant lymphoma of brain (LY); and glial dystrophy (GD) and of control (CO) subjects. Of all investigated pathologies the most frequent was OPP (65%), followed by HIV (26%), LY, INF, and GD (each 22%, respectively). Further, 68% of HIV-1 patients had bronchopneumonia, the highest incidence of which, at 60%, was seen in the OPP and LY group. Kynurenic acid was increased significantly in the frontal cortex of LY (392% of CO, P < 0.001), HIV (231% of CO, P < 0.01) and GD (193% of CO, P < 0.05), as well as in the cerebellum of GD (261% of CO, P < 0.01). A significant increase of L-kynurenine was observed in the frontal cortex of LY (385% of CO, P < 0.001) and INF (206% of CO, P < 0.01), and in the cerebellum of GD, LY, OPP and HIV (between 177% and 147% of CO). The KAT I activity increased significantly in the frontal cortex of all pathological subgroups, ie OPP = 420% > INF > LY > HIV > GD = 192% of CO. In the cerebellum, too, all pathological subgroups showed marked increase of KAT I activity (OPP = 320% > LY, HIV > GD > INF = 176% of CO). On contrary, the activity of KAT II was moderately, but significantly, higher in the frontal cortex of INF and OPP; in the cerebellum of HIV, OPP and LY it was comparable to the control, while mildly reduced in INF and GD. Interestingly, normal subjects with the diagnosis of bronchopneumonia were characterized by high kynurenic acid metabolism in the brain, too. Correlation analyses between kynurenine parameters revealed association between high ratio KAT I/KAT II and increased kynurenic acid level and lower L-kynurenine in the frontal cortex and cerebellum of HIV and LY subgroups. The present study revealed a different pattern of alteration of kynurenic acid metabolism in frontal cortex and cerebellum among investigated pathological subgroups of HIV-1 infected patients. Interestingly, a marked enhancement of kynurenic acid metabolism in the brain has been found with occurrence of bronchopneumonia. This finding indicates a notable association between impaired conditions of oxygen availability and enhancement of kynurenic acid formation in the human brain. These observation(s) might have an impact on the understanding of pathological processes in the brain after HIV-1 infection involving the development of neuropsychiatric and neurological symptoms, including memory and cognition impairment.


2013 ◽  
Vol 94 (3) ◽  
pp. 514-523 ◽  
Author(s):  
Clayton A. Wright ◽  
Jonas A. Nance ◽  
Edward M. Johnson

Polyomavirus JC (JCV) is the aetiological agent of progressive multifocal leukoencephalopathy (PML), a frequently fatal infection of the brain afflicting nearly 4 % of AIDS patients in the USA. Human immunodeficiency virus type 1 (HIV-1) Tat, acting together with cellular proteins at the JCV non-coding control region (NCCR), can stimulate JCV DNA transcription and replication. Tat in the brain is secreted by HIV-1-infected cells and incorporated by oligodendroglia, cells capable of infection by JCV. Thus far the effects of Tat on JCV have been studied primarily with protein encoded by the HIV-1 B clade most common in North America. Here, we determine the abilities of Tat from different HIV-1 clades to alter JCV early and late gene transcription and DNA replication initiated at the JCV origin. Tat from all clades tested stimulates both JCV early and late gene promoters, with clade B Tat being significantly most effective. Tat proteins from the HIV-1 clades display parallel patterns of differences in their effects on HIV-1 and JCV transcription, suggesting that Tat effects in both cases are mediated by the same cellular proteins. Clade B Tat is most effective at directing Smad mediators of tumour growth factor beta and cellular partner Purα to the NCCR. Tat proteins from all non-B clades inhibit initiation of JCV DNA replication. The effectiveness of HIV-1 clade B Tat at promoting JCV transcriptional and replicative processes highlights a need for further investigation to determine which molecular aspects of Tat from distinct HIV-1 substrains can contribute to the course of PML development in neuroAIDS.


Sign in / Sign up

Export Citation Format

Share Document