Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors

2003 ◽  
Vol 20 (4-6) ◽  
pp. 171-175 ◽  
Author(s):  
M Hejazi
2019 ◽  
Vol 287 ◽  
pp. 121398 ◽  
Author(s):  
Yixing Sui ◽  
Maarten Muys ◽  
Dedmer B. Van de Waal ◽  
Sarah D'Adamo ◽  
Pieter Vermeir ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 866
Author(s):  
Willian Capa-Robles ◽  
Ernesto García-Mendoza ◽  
José de Jesús Paniagua-Michel

Current mixotrophic culture systems for Dunaliella salina have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in D. salina. The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m−2 s−1 light intensity enabled significant assimilation of glycerol by D. salina and consequently enhanced growth (2.1 × 106 cell mL−1) and β-carotene accumulation (4.43 pg cell−1). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m−2 s−1) caused the β-carotene to reach values higher than 30 pg cell−1 and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of D. salina to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of D. salina.


Author(s):  
C. S. Bricker ◽  
S. R. Barnum ◽  
B. Huang ◽  
J. G. Jaworskl

Cyanobacteria are Gram negative prokaryotes that are capable of oxygenic photosynthesis. Although there are many similarities between eukaryotes and cyanobacteria in electron transfer and phosphorylation during photosynthesis, there are two features of the photosynthetic apparatus in cyanobacteria which distinguishes them from plants. Cyanobacteria contain phycobiliproteins organized in phycobilisomes on the surface of photosynthetic membrane. Another difference is in the organization of the photosynthetic membranes. Instead of stacked thylakolds within a chloroplast envelope membrane, as seen In eukaryotes, IntracytopIasmlc membranes generally are arranged in three to six concentric layers. Environmental factors such as temperature, nutrition and light fluency can significantly affect the physiology and morphology of cells. The effect of light Intensity shifts on the ultrastructure of Internal membrane in Anabaena variabilis grown under controlled environmental conditions was examined. Since a major constituent of cyanobacterial thylakolds are lipids, the fatty acid content also was measured and correlated with uItrastructural changes. The regulation of fatty acid synthesis in cyanobacteria ultimately can be studied if the fatty acid content can be manipulated.


2019 ◽  
Vol 64 (11) ◽  
pp. 1007-1014
Author(s):  
Tong XU ◽  
◽  
Jia-Hui ZHANG ◽  
Zhao-Ying LIU ◽  
Xuan LI ◽  
...  

Author(s):  
Andrea Highfield ◽  
Angela Ward ◽  
Richard Pipe ◽  
Declan C. Schroeder

Abstract Twelve hyper-β carotene-producing strains of algae assigned to the genus Dunaliella salina have been isolated from various hypersaline environments in Israel, South Africa, Namibia and Spain. Intron-sizing of the SSU rDNA and phylogenetic analysis of these isolates were undertaken using four commonly employed markers for genotyping, LSU rDNA, ITS, rbcL and tufA and their application to the study of Dunaliella evaluated. Novel isolates have been identified and phylogenetic analyses have shown the need for clarification on the taxonomy of Dunaliella salina. We propose the division of D. salina into four sub-clades as defined by a robust phylogeny based on the concatenation of four genes. This study further demonstrates the considerable genetic diversity within D. salina and the potential of genetic analyses for aiding in the selection of prospective economically important strains.


Sign in / Sign up

Export Citation Format

Share Document