P-8. Attempted PGD of thalassaemia using sequential first and second polar body analysis in Iran

2002 ◽  
Vol 4 ◽  
pp. 43
Author(s):  
M Salehi ◽  
R Salehi ◽  
M Mousazadeh ◽  
AR Sabahi
1998 ◽  
Vol 178 (6) ◽  
pp. 1298-1306 ◽  
Author(s):  
Charles M. Strom ◽  
Norman Ginsberg ◽  
Svetlana Rechitsky ◽  
Jeanine Cieslak ◽  
Victor Ivakhenko ◽  
...  

Author(s):  
Yuki Shiraiwa ◽  
Noritoshi Enatsu ◽  
Kazuki Yamagami ◽  
Koyu Furuhashi ◽  
Toshiroh Iwasaki ◽  
...  

Background: Although rescue intracytoplasmic sperm injection (r-ICSI) is extensively used worldwide, the indication of r-ICSI and its optimal timing remains obscure. This study aimed to assess the outcomes of r-ICSI following in vitro fertilization in different timings when fertilization is confirmed. Methods: This study included 5,156 cycles (47,785 eggs). Fertilization was confirmed by polar body analysis after 4 and 6 hr of coincubation of the sperm and oocyte. Oocytes that underwent IVF were divided into two groups based on the time when a second polar body was detected in more than 30% of all oocytes (Four-hr group and six-hr group). If the second polar body was not detected or was present in less than 30% of all oocytes after six hr of coincubation, rescue-ICSI (r-ICSI) was performed for oocytes without a second polar body (r-ICSI group). Results: The fertilization rates of two pronuclear (2PN) oocytes in the three groups (Four-hr group, six-hr group, and r-ICSI group) were 70.7%, 51.3%, and 58.0%, respectively. The blastocyst formation rates were 62.8%, 53.4%, and 42.9%, respectively. Conclusion: Performing r-ICSI after six hr of coincubation can salvage cases with fertilization failure in IVF. The higher fertilization rate of r-ICSI indicates that all oocytes without signs of fertilization after six hr of coincubation should undergo r-ICSI.


Zygote ◽  
2010 ◽  
Vol 18 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Tetsuo Ono ◽  
Eiji Mizutani ◽  
Chong Li ◽  
Teruhiko Wakayama

SummaryThe development of preservation techniques for male gametes at room temperature might allow us to store them in a simple and cost-effective manner. In this study, we studied the use of pure salt or sugar to preserve the whole cauda epididymidis, because it is known that food can be preserved in this way at room temperature for long periods. Mouse epididymides were placed directly in powdered salt (NaCl) or sugars (glucose or raffinose) for 1 day to 1 year at room temperature. Spermatozoa were recovered from the preserved organs after being rehydrated with medium and then isolated sperm heads were microinjected into fresh oocytes. Importantly, the oocyte activation capacity of spermatozoa was maintained after epididymal storage in NaCl for 1 year, whereas most untreated spermatozoa failed to activate oocytes within 1 month of storage. Pronuclear morphology, the rate of extrusion of a second polar body and the methylation status of histone H3 lysine 9 (H3K9me3) in those zygotes were similar to those of zygotes fertilized with fresh spermatozoa. However, the developmental ability of the zygotes decreased within 1 day of sperm storage. This effect led to nuclear fragmentation at the 2-cell embryo stage, irrespective of the storage method used. Thus, although the preserved sperm failed to allow embryo development, their oocyte activation factors were maintained by salt storage of the epididymis for up to 1 year at room temperature.


Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 1995-2003 ◽  
Author(s):  
G.L. Russo ◽  
K. Kyozuka ◽  
L. Antonazzo ◽  
E. Tosti ◽  
B. Dale

Using the fluorescent dye Calcium Green-dextran, we measured intracellular Ca2+ in oocytes of the ascidian Ciona intestinalis at fertilization and during progression through meiosis. The relative fluorescence intensity increased shortly after insemination in a single transient, the activation peak, and this was followed by several smaller oscillations that lasted for approximately 5 minutes (phase 1). The first polar body was extruded after the completion of the phase 1 transients, about 9 minutes after insemination, and then the intracellular calcium level remained at baseline for a period of 5 minutes (phase 2). At 14 minutes postinsemination a second series of oscillations was initiated that lasted 11 minutes (phase 3) and terminated at the time of second polar body extrusion. Phases 1 and 3 were inhibited by preloading oocytes with 5 mM heparin. Simultaneous measurements of membrane currents, in the whole-cell clamp configuration, showed that the 1–2 nA inward fertilization current correlated temporally with the activation peak, while a series of smaller oscillations of 0.1-0.3 nA amplitude were generated at the time of the phase 3 oscillations. Biochemical characterization of Maturation Promoting Factor (MPF) in ascidian oocytes led to the identification of a Cdc2-like kinase activity. Using p13suc1-sepharose as a reagent to precipitate the MPF complex, a 67 kDa (67 × 10(3) Mr) protein was identified as cyclin B. Histone H1 kinase activity was high at metaphase I and decreased within 5 minutes of insemination reaching a minimum level during phase 2, corresponding to telophase I. During phase 3, H1 kinase activity increased and then decayed again during telophase II. Oocytes preloaded with BAPTA and subsequently inseminated did not generate any calcium transients, nonetheless H1 kinase activity decreased 5 minutes after insemination, as in the controls, and remained low for at least 30 minutes. Injection of BAPTA during phase 2 suppressed the phase 3 calcium transients, and inhibited both the increase in H1 kinase activity normally encountered at metaphase II and second polar body extrusion.


Development ◽  
1975 ◽  
Vol 34 (3) ◽  
pp. 645-655
Author(s):  
Matthew H. Kaufman ◽  
Leo Sachs

The early development of parthenogenetically activated oocytes has been studied in C57BL × CBA-T6T6 (F1T6) translocation heterozygote mice and C57BL × CBA-LAC (F1LAC) mice. All F1T6 oocytes had either a quadrivalent or a univalent-trivalent configuration at meiosis I; no such chromosome configurations were observed in the F1LAC oocytes. At ovulation 36·5 % of the F1T6 oocytes had 19 or 21 chromosomes, whereas 97 % of the F1LAC had the normal haploid chromosome number of 20. After parthenogenetic activation, chromosome counts at metaphase of the first cleavage mitosis were made of the eggs with a single pronucleus following extrusion of the second polar body. These activated eggs had similar frequencies of 19, 20 and 21 chromosomes as had the oocytes at ovulation. The activated 1-cell eggs were transferred to the oviducts of pseudopregnant recipients and the embryos recovered 3 days later. At this stage of development, most of the F1T6 embryos with 19 chromosomes were no longer found, but the frequency of 21-chromosome embryos was similar to the frequency of 21-chromosome oocytes and activated eggs. There was a similar mean number of cells in the embryos with 20 and 21 chromosomes. The results indicate that nearly all the embryos with 19 chromosomes failed to develop, probably beyond the 2-cell stage, whereas oocytes with 21 chromosomes had a similar development to oocytes with 20 chromosomes up to the morula stage.


1999 ◽  
Vol 54 (3-4) ◽  
pp. 285-294 ◽  
Author(s):  
Q. Y. Sun ◽  
Y. Lax ◽  
S. Rubinstein ◽  
D. Y. Chen ◽  
H. Breitbart

Abstract A very sensitive method was established for detecting the activity of mitogen-activated protein (MAP) kinase in mouse eggs, and used to follow temporal changes of this kinase during fertilization and sponatenous or chemically-induced parthenogenic activation. MAP kinase activity increased between 1 and 2.5 h post-insemination, at which time the second polar body was emitted and sperm chromatin was dispersed; its activity decreased sharply at 8 h, when pronuclei were formed. Both calcium ionophore A23187 and ethanol simulta­ neously induced pronuclear formation and MAP kinase inactivation in aged eggs 8 h after incubation but less effectively in fresh eggs. The protein kinase inhibitor staurosporine in­duced pronuclear formation and MAP kinase inactivation more quickly than other treat­ ments, with MAP kinase inactivation occurring slightly proceeding pronuclear formation. Okadaic acid, a specific inhibitor of protein phosphatase 1 and 2A , induced increase in MAP kinase activity, and overcame pronuclear formation induced by various stimuli. MAP kinase inactivation preceded pronuclear formation in eggs spontaneously activated by aging in vitro, perhaps due to cytoplasmic degeneration and thus delayed response of nuclear envelope precursors to MAP kinase inactivation. These data suggest that MAP kinase is a key protein kinase regulating the events of mouse egg activation. Increased MAP kinase activity is temporally correlated with the second polar body emission and sperm chromatin decondensation. Although different stimuli (including sperm) may initially act through different mechanisms, they finally inactivate MAP kinase, probably by allowing the action of protein phosphatase, and thus induces the transition to interphase.


1992 ◽  
Vol 102 (3) ◽  
pp. 457-467 ◽  
Author(s):  
J.Z. Kubiak ◽  
M. Weber ◽  
G. Geraud ◽  
B. Maro

When metaphase II-arrested mouse oocytes (M II) are activated very soon after ovulation, they respond abortively by second polar body extrusion followed by another metaphase arrest (metaphase III, M III; Kubiak, 1989). The M II/M III transition resembles the natural transition between the first and second meiotic metaphases (M I/M II). We observed that a similar sequence of events takes place during these two transitions: after anaphase, a polar body is extruded, the microtubules of the midbody disappear rapidly and a new metaphase spindle forms. The MPM-2 monoclonal antibody (which reacts with phosphorylated proteins associated with the centrosome during M-phase) stains discrete foci of peri-centriolar material only in metaphase arrested oocytes; during both transitional periods, a diffuse staining is observed, suggesting that these centrosomal proteins are dephosphorylated, as in a normal interphase. However, the chromosomes always remain condensed and an interphase network of microtubules is never observed during the transitional periods. Incorporation of 32P into proteins increases specifically during the transitional periods. Pulse-chase experiments, after labeling of the oocytes in M phase with 32P, showed that a 62 kDa phosphoprotein band disappears at the time of polar body extrusion. Histone H1 kinase activity (which reflects the activity of the maturation promoting factor) drops during both transitional periods to the level characteristic of interphase and then increases when the new spindle forms. Both the M I/M II and M II/M III transitions require protein synthesis as demonstrated by the effect of puromycin. These results suggest that the two M-phase/M-phase transitions are probably driven by the same molecular mechanism.


2007 ◽  
Vol 27 (4) ◽  
pp. 317-321 ◽  
Author(s):  
P. Renbaum ◽  
B. Brooks ◽  
Y. Kaplan ◽  
T. Eldar-Geva ◽  
E J. Margalioth ◽  
...  

Development ◽  
1974 ◽  
Vol 31 (2) ◽  
pp. 513-526
Author(s):  
M. H. Kaufman ◽  
M. A. H. Surani

Eggs from (C57B1 × A2G)F1 mice were activated by treatment with hyaluronidase, which removed the follicle cells, and cultured in vitro. Observations were made 6–8 h after hyaluronidase treatment to determine the frequency of activation and the types of parthenogenones induced. Cumulus-free eggs resulting from hyaluronidase treatment were incubated for 2¼ h in culture media of various osmolarities. The frequency of activation was found to be dependent on the postovulatory age of oocytes, while the types of parthenogenones induced were dependent on the osmolarity of the in vitro culture medium and their postovulatory age. Culture in low osmolar medium suppressed the extrusion of the second polar body (2PB). This decreased the incidence of haploid eggs with a single pronucleus and 2PB and immediately cleaved eggs from 97·5% to 42·3% of the activated population. Where 2PB extrusion had been suppressed, 97·4% of parthenogenones contained two haploid pronuclei. Very few were observed with a single and presumably diploid pronucleus. Serial observations from 11 to 18 h after hyaluronidase treatment were made on populations of activated eggs as they entered the first cleavage mitosis after 2¼ h incubation in medium either of normal (0·287 osmol) or low (0·168 osmol) osmolarity. A delay in the time of entry into the first cleavage mitosis similar to the duration of incubation in low osmolar medium was observed. Further, eggs were incubated in control and low osmolar culture media containing uniformly labelled [U-14C]amino acid mixture to examine the extent of protein synthesis in recently activated eggs subjected to these culture conditions. An hypothesis is presented to explain the effect of incubation in low osmolar culture medium in delaying the first cleavage mitosis.


Sign in / Sign up

Export Citation Format

Share Document