High-Precision Navigation and Guidance Systems of Aerial Vehicles is the Use of Computer Vision Technologies

2004 ◽  
Vol 37 (6) ◽  
pp. 587-592
Author(s):  
E. Fedosov ◽  
G. Sebryakov ◽  
W. Insarov
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4227
Author(s):  
Nicolás Jacob-Loyola ◽  
Felipe Muñoz-La Rivera ◽  
Rodrigo F. Herrera ◽  
Edison Atencio

The physical progress of a construction project is monitored by an inspector responsible for verifying and backing up progress information, usually through site photography. Progress monitoring has improved, thanks to advances in image acquisition, computer vision, and the development of unmanned aerial vehicles (UAVs). However, no comprehensive and simple methodology exists to guide practitioners and facilitate the use of these methods. This research provides recommendations for the periodic recording of the physical progress of a construction site through the manual operation of UAVs and the use of point clouds obtained under photogrammetric techniques. The programmed progress is then compared with the actual progress made in a 4D BIM environment. This methodology was applied in the construction of a reinforced concrete residential building. The results showed the methodology is effective for UAV operation in the work site and the use of the photogrammetric visual records for the monitoring of the physical progress and the communication of the work performed to the project stakeholders.


2014 ◽  
Vol 644-650 ◽  
pp. 207-210
Author(s):  
Shuang Liu ◽  
Xiang Jie Kong ◽  
Ming Cai Shan

Binocular parallax vision system is a kind of computer vision technology. Two cameras on different locations can get two different pictures of same object. The space position of the object can be calculated by the parallax information of two different pictures. The binocular parallax vision technology includes cameras calibration, image processing, and stereo matching analysis. The paper will introduce the inside and outside parameters calibration methods, and combing the traffic applications, designed the calibrating scheme. The parameters that obtained according to the scheme can meet the demands of measuring the vehicle distance. The high precision can meet the needs of intelligent transportation vehicles in a security vehicles spacing survey, which is an effective way for measuring the front car distance.


2015 ◽  
Vol 4 (8) ◽  
pp. 46 ◽  
Author(s):  
Pedro Ortiz Coder

<p>New techniques in graphical heritage documentation have been improving recently. Modern photogrammetry and laser scanner constitute techniques with a good quality for those purposes. In this document, we will explain an easy photogrammetric method which permits to obtain accurate results. It is important to separate it from other methods based on computer vision with less accuracy. 4e photogrammetry solution is applied in this test through pictures taken from UAV (Unmanned Aerial Vehicles) and used on an archaeological site in Extremadura.</p>


2019 ◽  
Vol 9 (15) ◽  
pp. 3196 ◽  
Author(s):  
Lidia María Belmonte ◽  
Rafael Morales ◽  
Antonio Fernández-Caballero

Personal assistant robots provide novel technological solutions in order to monitor people’s activities, helping them in their daily lives. In this sense, unmanned aerial vehicles (UAVs) can also bring forward a present and future model of assistant robots. To develop aerial assistants, it is necessary to address the issue of autonomous navigation based on visual cues. Indeed, navigating autonomously is still a challenge in which computer vision technologies tend to play an outstanding role. Thus, the design of vision systems and algorithms for autonomous UAV navigation and flight control has become a prominent research field in the last few years. In this paper, a systematic mapping study is carried out in order to obtain a general view of this subject. The study provides an extensive analysis of papers that address computer vision as regards the following autonomous UAV vision-based tasks: (1) navigation, (2) control, (3) tracking or guidance, and (4) sense-and-avoid. The works considered in the mapping study—a total of 144 papers from an initial set of 2081—have been classified under the four categories above. Moreover, type of UAV, features of the vision systems employed and validation procedures are also analyzed. The results obtained make it possible to draw conclusions about the research focuses, which UAV platforms are mostly used in each category, which vision systems are most frequently employed, and which types of tests are usually performed to validate the proposed solutions. The results of this systematic mapping study demonstrate the scientific community’s growing interest in the development of vision-based solutions for autonomous UAVs. Moreover, they will make it possible to study the feasibility and characteristics of future UAVs taking the role of personal assistants.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1532 ◽  
Author(s):  
Jamie Wubben ◽  
Francisco Fabra ◽  
Carlos T. Calafate ◽  
Tomasz Krzeszowski ◽  
Johann M. Marquez-Barja ◽  
...  

Over the last few years, several researchers have been developing protocols and applications in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore, in this work, a solution for high precision landing based on the use of ArUco markers is presented. In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers sized 56 × 56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. The proposal was evaluated and validated using both the ArduSim simulation platform and real UAV flights. The results show an average offset of only 11 cm from the target position, which vastly improves the landing accuracy compared to the traditional GPS-based landing, which typically deviates from the intended target by 1 to 3 m.


2018 ◽  
Vol 92 ◽  
pp. 447-463 ◽  
Author(s):  
Abdulla Al-Kaff ◽  
David Martín ◽  
Fernando García ◽  
Arturo de la Escalera ◽  
José María Armingol

1989 ◽  
Vol 1 (3) ◽  
pp. 220-226
Author(s):  
Tohru Tanigawa ◽  
◽  
Toshitsugu Sawai ◽  
Tadashi Nakao

Recently, industrial robotics and computer vision technology has become very important in flexible manufacturing systems and automated factories. Especially high precision automatic alignment technology beyond human ability is essential to some manufactures, and its application fields are extending rapidly. This paper describes the high precision automatic alignment system of large-sized LCD panels. The features of the system are (1) high precision and high speed detection of position using the special alignment mark, (2) high contrast image obtained by the use of ultraviolet rays, (3) new image-processing algorithms for improvement of system reliability.


2013 ◽  
Vol 20 (1) ◽  
pp. 97-126 ◽  
Author(s):  
Roberto Sabatini ◽  
Leopoldo Rodríguez ◽  
Anish Kaharkar ◽  
Celia Bartel ◽  
Tesheen Shaid ◽  
...  

ABSTRACT This paper presents the second part of the research activity performed by Cranfield University to assess the potential of low-cost navigation sensors for Unmanned Aerial Vehicles (UAVs). This part focuses on carrier-phase Global Navigation Satellite Systems (GNSS) for attitude determination and control of small to medium size UAVs. Recursive optimal estimation algorithms were developed for combining multiple attitude measurements obtained from different observation points (i.e., antenna locations), and their efficiencies were tested in various dynamic conditions. The proposed algorithms converged rapidly and produced the required output even during high dynamics manoeuvres. Results of theoretical performance analysis and simulation activities are presented in this paper, with emphasis on the advantages of the GNSS interferometric approach in UAV applications (i.e., low cost, high data-rate, low volume/weight, low signal processing requirements, etc.). The simulation activities focussed on the AEROSONDE UAV platform and considered the possible augmentation provided by interferometric GNSS techniques to a low-cost and low-weight/volume integrated navigation system (presented in the first part of this series) which employed a Vision-Based Navigation (VBN) system, a Micro-Electro-Mechanical Sensor (MEMS) based Inertial Measurement Unit (IMU) and code-range GNSS (i.e., GPS and GALILEO) for position and velocity computations. The integrated VBN-IMU-GNSS (VIG) system was augmented using the inteferometric GNSS Attitude Determination (GAD) sensor data and a comparison of the performance achieved with the VIG and VIG/GAD integrated Navigation and Guidance Systems (NGS) is presented in this paper. Finally, the data provided by these NGS are used to optimise the design of a hybrid controller employing Fuzzy Logic and Proportional-Integral-Derivative (PID) techniques for the AEROSONDE UAV.


Sign in / Sign up

Export Citation Format

Share Document