scholarly journals 231. Large Scale Production and Scale Up of DNA Plasmid Vectors With Complex Gene Inserts

2014 ◽  
Vol 22 ◽  
pp. S87-S88
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Barros ◽  
H. Pereira ◽  
J. Campos ◽  
A. Marques ◽  
J. Varela ◽  
...  

Abstract Industrial scale-up of microalgal cultures is often a protracted step prone to culture collapse and the occurrence of unwanted contaminants. To solve this problem, a two-stage scale-up process was developed – heterotrophically Chlorella vulgaris cells grown in fermenters (1st stage) were used to directly inoculate an outdoor industrial autotrophic microalgal production unit (2nd stage). A preliminary pilot-scale trial revealed that C. vulgaris cells grown heterotrophically adapted readily to outdoor autotrophic growth conditions (1-m3 photobioreactors) without any measurable difference as compared to conventional autotrophic inocula. Biomass concentration of 174.5 g L−1, the highest value ever reported for this microalga, was achieved in a 5-L fermenter during scale-up using the heterotrophic route. Inocula grown in 0.2- and 5-m3 industrial fermenters with mean productivity of 27.54 ± 5.07 and 31.86 ± 2.87 g L−1 d−1, respectively, were later used to seed several outdoor 100-m3 tubular photobioreactors. Overall, all photobioreactor cultures seeded from the heterotrophic route reached standard protein and chlorophyll contents of 52.18 ± 1.30% of DW and 23.98 ± 1.57 mg g−1 DW, respectively. In addition to providing reproducible, high-quality inocula, this two-stage approach led to a 5-fold and 12-fold decrease in scale-up time and occupancy area used for industrial scale-up, respectively.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1469
Author(s):  
Carlos Molina-Ramírez ◽  
Juan Álvarez ◽  
Robin Zuluaga ◽  
Cristina Castro ◽  
Piedad Gañán

Currently, cellulose nanostructures are among the most promising structures, and extensive work in materials and biotechnology industries is aimed at identifying an efficient process of production. Even when production at the laboratory scale is successful, crucial aspects of increased commercial applications for cellulose nanostructures are linked to large-scale production. Large-scale production requires a balance between the cost of the culture medium and product value. Therefore, in this work, for the optimization and scaling up of bacterial nanocellulose, a culture medium consisting of rotten banana unsuitable for human consumption was used for the first time as an inexpensive feedstock. Initially, the bacterial nanocellulose (BNC) culture medium conditions were optimized, and it was established that a glucose concentration of 26.4 g/L and a V/A ratio of 2.2 cm were the optimal conditions for production reaching a BNC yield of 5 g/L, which was 42.4% higher than the best result initially obtained. Finally, the scale-up process was performed, implementing a regime analysis methodology by comparing the characteristic times of the critical mechanisms involved in BNC production, namely, microbial growth, glucose consumption, BNC production, and glucose diffusion into the BNC membrane, as the first approach for this type of BNC production process. The mechanism underlying the BNC production process is glucose diffusion into the BNC membrane (characteristic time, 675.47 h). Thus, the V/A ratio was selected as the scale-up criterion most suitable for producing BNC under static culture conditions, allowing the production of 16 g of BNC after 12 d of fermentation in a plastic bioreactor, which was 3378% higher than that produced in glass vessels. The results obtained in this study may initiate further improvements in BNC commercial production by exploiting different feedstocks.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 286
Author(s):  
Safaa Omer ◽  
László Forgách ◽  
Romána Zelkó ◽  
István Sebe

Recently, the electrospinning (ES) process has been extensively studied due to its potential applications in various fields, particularly pharmaceutical and biomedical purposes. The production rate using typical ES technology is usually around 0.01–1 g/h, which is lower than pharmaceutical industry production requirements. Therefore, different companies have worked to develop electrospinning equipment, technological solutions, and electrospun materials into large-scale production. Different approaches have been explored to scale-up the production mainly by increasing the nanofiber jet through multiple needles, free-surface technologies, and hybrid methods that use an additional energy source. Among them, needleless and centrifugal methods have gained the most attention and applications. Besides, the production rate reached (450 g/h in some cases) makes these methods feasible in the pharmaceutical industry. The present study overviews and compares the most recent ES approaches successfully developed for nanofibers’ large-scale production and accompanying challenges with some examples of applied approaches in drug delivery systems. Besides, various types of commercial products and devices released to the markets have been mentioned.


2021 ◽  
Vol 12 (8) ◽  
pp. 58-63
Author(s):  
V. Manikandan

The dosage form of parenteral is sterile and gives a quick beginning of activity and gives an immediate action to accomplishing the medication impact inside the body. The route of parenteral administration is the most well-known and productive route for the conveyance of dynamic medication substances with poor bioavailability and medications with a tight therapeutic index. The principal objective of the technique was to endeavour to talk about the different procedures needed for the pilot plant production considers. The pilot plant is the term that is normally more modest than large-scale production plants yet it is the underlying scope of sizes. It is planned for learning, and making the definitions on a limited scale to accomplish the relationship with the enormous scope production, and they are normally more adaptable perhaps to the detriment of the economy. Most of the pilot plants are implicit in the maker's own research centres of the manufacturer utilizing stock lab hardware. These pilot plant studies are performed by using a technology transfer (TT) documentation report which is made by the research and development department for product development. Hence, this process would meet product quality, safety, and efficacy and further this production techniques will transfer to large-scale production for parenteral preparation.


2019 ◽  
Author(s):  
Swetha Narayankumar ◽  
Neethu K. Shaji ◽  
Veena gayathri Krishnaswamy

ABSTRACTPoly(hydroxybutyric acid) (PHB) and other biodegradable polyesters are promising candidates for the development of environment-friendly and completely biodegradable plastics. One of the major drawbacks in the production of PHB is production costs, since it requires large amount of carbon source. This calls for cheaper substrates that can be used as an alternative carbon source such as agro-industrial residues. In this study, cane molasses was used as an additional carbon source at 2% concentration along with glucose for large scale production of PHB. Ammonium nitrate was used as the nitrogen source and the C:N ratio was maintained at 1:15. The maximum production of PHB was obtained at 24hours of growth which was found to be 0.5g/L and had a dry cell weight of 3.7g/ L.The PHB produced was further analysed by GC-MS Analysis and Transmission Electron Microscopy (TEM).The obtained PHB from scale-up studies were further electrospinned using different blends of polymers.


2019 ◽  
Vol 13 (2) ◽  
pp. 80-91
Author(s):  
Swayamprakash Patel ◽  
Gayatri Patel

Background: Multiple applications of nanofiber in various segments of science and technology have sparked the interest of innovators to explore the innovative approaches for nanofiber production. The bubble electrospinning technique is the most versatile and simplest approach to scale up the production of nanofiber at the industrial level. Numerous patent applications have been filed with innovations and advancements in the field of bubble electrospinning technique. Methods: In present work, different patent applications in the field of bubble electrospinning technique, which represents the advancement in bubble electrospinning technology, are searched and analyzed using various paid and free patent databases. The patent search results are compiled, analyzed and individual innovations are studied in detail to bring all the advancements hitherto in the bubble electrospinning technology under the purview of one review article. Results: The “bubble ws3 electrospin” syntax in the structured search (TAC) facility of the patseer® has revealed most relevant patents on advancement in bubble electrospinning. After applying the family patent filter to the search result (33 patents), ten patents are selected for detailed study. The gist of the invention from each of the patent application or granted patent is recapitulated in this paper, along with their mosaics. Conclusion: Definite number of inventions are available in the field of bubble electrospinning technique. Inventions, which are disclosed, might have their pros and cons with respect to ease of acceptance by the industrial fraternity for large-scale production depending upon simplicity or complexity of the instrument. There is a profound scope of innovation in the bubble electrospinning technology in the areas like bubble stabilization, size and production rate control and much more.


Sign in / Sign up

Export Citation Format

Share Document