scholarly journals 4. AAV Labeling of Break-Prone Palindromes in Mammalian Genomes: Exploitation of the In Vivo rAAV Biology for Studies of Genomic Instability in Living Animals

2007 ◽  
Vol 15 ◽  
pp. S2
1995 ◽  
Vol 15 (8) ◽  
pp. 4249-4259 ◽  
Author(s):  
A M Yahanda ◽  
J M Bruner ◽  
L A Donehower ◽  
R S Morrison

Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes.


2002 ◽  
Vol 195 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Rodrig Marculescu ◽  
Trang Le ◽  
Paul Simon ◽  
Ulrich Jaeger ◽  
Bertrand Nadel

Most lymphoid malignancies are initiated by specific chromosomal translocations between immunoglobulin (Ig)/T cell receptor (TCR) gene segments and cellular proto-oncogenes. In many cases, illegitimate V(D)J recombination has been proposed to be involved in the translocation process, but this has never been functionally established. Using extra-chromosomal recombination assays, we determined the ability of several proto-oncogenes to target V(D)J recombination, and assessed the impact of their recombinogenic potential on translocation rates in vivo. Our data support the involvement of 2 distinct mechanisms: translocations involving LMO2, TAL2, and TAL1 in T cell acute lymphoblastic leukemia (T-ALL), are compatible with illegitimate V(D)J recombination between a TCR locus and a proto-oncogene locus bearing a fortuitous but functional recombination site (type 1); in contrast, translocations involving BCL1 and BCL2 in B cell non-Hodgkin’s lymphomas (B-NHL), are compatible with a process in which only the IgH locus breaks are mediated by V(D)J recombination (type 2). Most importantly, we show that the t(11;14)(p13;q32) translocation involving LMO2 is present at strikingly high frequency in normal human thymus, and that the recombinogenic potential conferred by the LMO2 cryptic site is directly predictive of the in vivo level of translocation at that locus. These findings provide new insights into the regulation forces acting upon genomic instability in B and T cell tumorigenesis.


2000 ◽  
Vol 20 (10) ◽  
pp. 3449-3458 ◽  
Author(s):  
Farooq Nasar ◽  
Craig Jankowski ◽  
Dilip K. Nag

ABSTRACT Inverted-repeated or palindromic sequences have been found to occur in both prokaryotic and eukaryotic genomes. Such repeated sequences are usually short and present at several functionally important regions in the genome. However, long palindromic sequences are rare and are a major source of genomic instability. The palindrome-mediated genomic instability is believed to be due to cruciform or hairpin formation and subsequent cleavage of this structure by structure-specific nucleases. Here we present both genetic and physical evidence that long palindromic sequences (>50 bp) generate double-strand breaks (DSBs) at a high frequency during meiosis in the yeast Saccharomyces cerevisiae. The palindrome-mediated DSB formation depends on the primary sequence of the inverted repeat and the location and length of the repeated units. The DSB formation at the palindrome requires all of the gene products that are known to be responsible for DSB formation at the normal meiosis-specific sites. Since DSBs are initiators of nearly all meiotic recombination events, most of the palindrome-induced breaks appear to be repaired by homologous recombination. Our results suggest that short palindromic sequences are highly stable in vivo. In contrast, long palindromic sequences make the genome unstable by inducing DSBs and such sequences are usually removed from the genome by homologous recombination events.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1196-1196
Author(s):  
Amy M Skinner ◽  
Devorah C Goldman ◽  
Andrea McBeth ◽  
Matthew J Shurtleff ◽  
Harv W Fleming ◽  
...  

Abstract Abstract 1196 Gene copy number variation (CNV) and translocation-derived gene fusion products are commonly observed in hematological malignancies. Mechanisms precipitating CNV include failed cytokinesis or spontaneous cell fusion. Heterotypic fusion of hematopoietic cells with non-hematopoeitic cells has been reported following injury in diverse tissues. Cell fusion involves blending membranes, intracellular material, and nuclear material from two parental cells to form a genetically and immunophenotypically distinct (often hyperdiploid) single daughter cell. We therefore hypothesized that if we could generate genetically chimeric, hematopoietic cells via cell-cell fusion, they might provide an instructive model for determining the role CNV plays in leukemogenesis. To generate genetically abnormal hematopoietic cells in vivo, a transplantation model with radiation induction was employed in which donor and host mice possess numerous unique cell surface and genomic markers. Fusion was determined by co-expression of donor and host markers among hematopoietic cells isolated from recipient BM, spleen, and thymus by serial fluorescence activated cell sorting. The presence of ‘bona fide’ fused cells was confirmed by performing rigorous immunophenotypic and genotypic analyses of individual cells, including immunofluoresence staining and z-stack analysis, single nucleotide polymorphism (SNP) PCR, and fluorescent in situ hybridization (FISH). Fused cell populations were detected in both mature myeloid and lymphoid lineages. Consistent with the proposed model of studying early, initiating leukemogenic events, cell fusion was also detected in the progenitor cell populations including colony forming unit (CFU-C) myeloid progenitors, and c-kit+, sca-1+, lin- (KSL) cells. Moreover, transplanted fused hematopoietic cells could reconstitute lethally irradiated secondary hosts >16 weeks after transplant. Thus, hematopoietic progenitor cells are capable of homotypic cell fusion, and subsequent to cell fusion, these cells are further able to divide, differentiate, and are competent to contribute to functional hematopoiesis. Additional assays are underway to more definitively address the functional significance of hematopoietic cell fusion as a repair mechanism, or during homeostasis. Importantly, we detected evidence of genomic instability in fused hematopoietic cells using a variety of assays. Fused cells with loss of specific donor and/or host marker genes were identified by immunofluorescence and genomic DNA analysis. DNA strand breakage, evaluated by single cell gel electrophoresis (comet assay) showed the presence of a significantly larger tail moment in fused cells suggesting a higher degree of DNA damage in these cells. Studies for evaluation of p53 status and histone H2AX activation are underway. In summary, our data not only provide novel evidence that homotypic cell fusion occurs between hematopoietic cells following injury, but also that fused cells retain their replicative potential in vitro and in vivo and exhibit greater genomic instability compared to non-fused counterparts. Because most existing murine models of leukemogenesis focus on events in the promotion of disease, we believe fusion and reductive division of hematopoietic cells shown here will serve as a novel platform to study the role of CNV as a leukemia-initiating event. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2418-2418
Author(s):  
Lori A. Ehrlich ◽  
Katherine S. Yang-Iott ◽  
Amy DeMicco ◽  
Craig H. Bassing

Abstract Abstract 2418 Acute lymphoblastic leukemia (ALL) is diagnosed in approximately 2500 children per year. Although high cure rates have been achieved for ALL, these cancers account for the highest number of non-brain tumor cancer-related deaths in children. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature TCRβ−CD4+/CD8+ T-cells that represents ∼15% of pediatric ALL diagnoses, comprises most of the therapy-resistant ALL tumors, and exhibits a high frequency of relapse. The Ataxia Telangiectasia mutated (ATM) protein kinase activates the cellular response to DNA double strand breaks (DSBs) to coordinate DNA repair with cell survival, proliferation, and differentiation. Somatic inactivating ATM mutations occur in 10–20% of T-ALL and T cell lymphoblastic lymphoma (T-LL) tumors and are associated with resistance to genotoxic chemotherapy drugs and therapy relapse, likely driven by increased genomic instability in cells lacking functional ATM. The impaired DSB response of ATM-deficient cells can be exploited to design combinations of genotoxic drugs that specifically kill these cells in vitro. However, the in vivo potential of such drug combinations to treat T-ALL have not been reported. We sought to develop a pre-clinical mouse model that could be used to test effectiveness of such drug combinations to treat T-ALLs and T-LLs with somatic ATM inactivation. Although germline ATM-deficient (Atm−/−) mice succumb by six months of age to immature CD4+/CD8+ T-cell lymphomas containing genomic instability analogous to human T-ALL tumors, we sought a more physiologic model that would avoid potential complications due to ATM-deficiency in thymic epithelial cells. Thus, we generated and characterized VavCre:Atmflox/flox mice with conditional Atm inactivation restricted to hematopoietic cell lineages. These mice contain reduced numbers of TCRβ−CD4+/CD8+, TCRβ+CD4+/CD8−, and TCRβ+CD4−/CD8+ thymocytes and of TCRβ+CD4+ and TCRb+CD8+ splenic T-cells, mirroring the phenotype of Atm−/− mice. We have found that VavCre:Atmflox/flox mice succumb at an average of 95 days (range 53–183 days) to clonal TCRβ−CD4+/CD8+ or TCRβ+CD4−/CD8+ thymic lymphomas. Evaluation of the bone marrow in a subset of these mice indicates that the lymphoma has disseminated and are classified as leukemia. Our initial cytogenetic analyses of these tumors indicate that they contain both clonal translocations involving chromosome 12 and/or chromosome 14 and deletion of one allelic copy of the haploinsufficient Bcl11b tumor suppressor gene. Hemizygous BCL11B inactivation occurs in ∼20% of human T-ALL tumors, indicating the clinical relevance of VavCre:Atmflox/flox mice as a model for human T-ALL. Our ongoing studies include complete cytogenetic and molecular characterization of VavCre:Atmflox/flox tumors and in vivo testing of chemotherapeutics targeting the Atm pathway in this mouse model of T-ALL/T-LL. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 107 (25) ◽  
pp. 11537-11542 ◽  
Author(s):  
G. Cuevas-Ramos ◽  
C. R. Petit ◽  
I. Marcq ◽  
M. Boury ◽  
E. Oswald ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2080-2080
Author(s):  
Melinda Day ◽  
Tyler Maclay ◽  
Amber Cyr ◽  
Muneer G Hasham ◽  
Kin-hoe Chow ◽  
...  

Genomic instability is recognized as a driver of tumorigenesis and cancer progression. Loss of tumor suppressors or activation of oncogenes can induce DNA damage stress, promoting genomic instability and creating dependencies upon key DNA repair pathways. These dependencies can be targeted therapeutically to induce synthetic lethality. The homologous recombination (HR) repair pathway is an attractive target. HR deficient cancers are hypersensitive to numerous anticancer drugs, and tumors will often induce expression of HR genes to promote drug resistance. RAD51 is a key component of the HR pathway. RAD51 forms nucleoprotein filaments at sites of DNA damage and replication fork stalls, mediating homologous DNA strand exchange to promote recombinational repair of breaks and damaged replication forks. We utilized four small molecule inhibitors of RAD51-mediated HR for evaluation of RAD51 as a potential therapeutic target. Compounds CYT-0851, CYT-0853, CYT-1027, and CYT-1127 were evaluated for anti-cancer activity in vitro and in vivo. To determine the impact of the small molecules on RAD51 and HR, all four were tested for effects on RAD51 focus formation and sister chromatid exchange (SCE) activity. All the compounds showed a reduction in SCE activity, however only CYT-0851 and CYT-0853 produced a measurable reduction in RAD51 foci. We have previously shown that that RAD51 inhibition leads to accumulation of DNA breaks, and ultimately cell death, in cells expressing the DNA mutator protein Activation Induced Cytidine deaminase (AICDA/AID). Cytotoxicity assays were performed in an AID+ (Daudi, Burkitt's Lymphoma) and AID- (WI-38, fibroblast) cell lines. All four compounds were preferentially active in AID+ cells with little to no cytotoxicity observed in the AID-negative WI-38 cell line. CYT-0853 was the most potent in the Daudi cell line with an EC50 of 8nM. All four compounds were orally bioavailable in all preclinical species tested but showed differences in pharmacokinetics. Preclinical cell line derived xenograft models of AID-high Burkitt's lymphoma (Daudi) and B-cell acute lymphoblastic leukemia (CCRF-SB) were used to determine the in vivo anti-tumor activity of the compounds in lymphoid cancer models. CYT-0851 and CYT-0853 both showed significant anti-tumor activity with tumor growth inhibition of greater than 50% in both models. Further analysis showed drug exposure with CYT-0851 was more consistent in the CDX models than CYT-0853. Overall, these data indicate that RAD51 and HR are attractive therapeutic targets for the treatment of lymphoid malignancies and that CYT-0851 is a viable clinical development candidate. Disclosures Day: Cyteir Therapeutics: Employment. Maclay:Cyteir Therapeutics: Employment. Cyr:Cyteir Therapeutics: Employment. Mills:Cyteir Therapeutics: Employment, Equity Ownership.


2006 ◽  
Author(s):  
Kanokporn Rithidech ◽  
Sanford, R. Simon ◽  
Elbert, B. Whorton

2021 ◽  
Author(s):  
Charlotte Degorre ◽  
Ophelie Renoult ◽  
Ann Christin Parplys ◽  
Hala Awada ◽  
Anne Clavreul ◽  
...  

Despite aggressive clinical protocol, all glioblastoma (GBM) recur at the initial site within the irradiated peritumoral microenvironment. Whereas irradiated microenvironment has been recently proposed to accelerate GBM relapse, molecular and cellular mechanisms remain unknown. Here, using relevant in vitro and in vivo models, we decipher how radiation-induced endothelial senescence drives the emergence of aggressive GBM cells. Secretome (SASP) of radiation-induced senescent (RIS) endothelium enhances genomic instability and intratumoral heterogeneity in irradiated GBM cells. In-depth molecular studies revealed that CXCL5 and CXCL8, from the SASP, activate CXCR2 receptor on tumor cells leading to increased DNA hyper-replication, micronuclei formation and aneuploidy. Importantly, through CXCL5/8-CXCR2 axis activation, this SASP increases GBM aggressiveness in vivo. Both chemokines were detected in relapsing, but not primary, GBM biopsies and positively correlated with worst patient outcome. In conclusion, we identify new molecular and preclinical insights of relapsing GBM aggressiveness where RIS vascular niches fuel aggressive tumor emergence.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Márcia Fernanda Correia Jardim Paz ◽  
Marcus Vinícius Oliveira Barros de Alencar ◽  
Rodrigo Maciel Paulino de Lima ◽  
André Luiz Pinho Sobral ◽  
Glauto Tuquarre Melo do Nascimento ◽  
...  

Omeprazole (OME) is commonly used to treat gastrointestinal disorders. However, long-term use of OME can increase the risk of gastric cancer. We aimed to characterize the pharmacological effects of OME and to correlate its adverse effects and toxicogenetic risks to the genomic instability mechanisms and cancer-based on database reports. Thus, a search (till Aug 2019) was made in the PubMed, Scopus, and ScienceDirect with relevant keywords. Based on the study objective, we included 80 clinical reports, forty-six in vitro, and 76 in vivo studies. While controversial, the findings suggest that long-term use of OME (5 to 40 mg/kg) can induce genomic instability. On the other hand, OME-mediated protective effects are well reported and related to proton pump blockade and anti-inflammatory activity through an increase in gastric flow, anti-inflammatory markers (COX-2 and interleukins) and antiapoptotic markers (caspases and BCL-2), glycoprotein expression, and neutrophil infiltration reduction. The reported adverse and toxic effects, especially in clinical studies, were atrophic gastritis, cobalamin deficiencies, homeostasis disorders, polyp development, hepatotoxicity, cytotoxicity, and genotoxicity. This study highlights that OME may induce genomic instability and increase the risk of certain types of cancer. Therefore, adequate precautions should be taken, especially in its long-term therapeutic strategies and self-medication practices.


Sign in / Sign up

Export Citation Format

Share Document