scholarly journals 48. Increased Potency of Engineered FasL-Expressing T Cells Is Modified in Primary Prostate Cancer Cells by Common Chemotherapeutic Agents

2007 ◽  
Vol 15 ◽  
pp. S20-S21
2020 ◽  
Vol 59 (10) ◽  
pp. 1174-1187
Author(s):  
Xian Zhao ◽  
Yanli Wang ◽  
Jianfeng He ◽  
Rong Deng ◽  
Xiaojun Huang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Richard Komakech ◽  
Youngmin Kang ◽  
Jun-Hwan Lee ◽  
Francis Omujal

Prostate cancer remains one of the major causes of death worldwide. In view of the limited treatment options for patients with prostate cancer, preventive and treatment approaches based on natural compounds can play an integral role in tackling this disease. Recent evidence supports the beneficial effects of plant-derived phytochemicals as chemopreventive and chemotherapeutic agents for various cancers, including prostate cancer. Prunus africana has been used for generations in African traditional medicine to treat prostate cancer. This review examined the potential roles of the phytochemicals from P. africana, an endangered, sub-Saharan Africa plant in the chemoprevention and chemotherapy of prostate cancer. In vitro and in vivo studies have provided strong pharmacological evidence for antiprostate cancer activities of P. africana-derived phytochemicals. Through synergistic interactions between different effective phytochemicals, P. africana extracts have been shown to exhibit very strong antiandrogenic and antiangiogenic activities and have the ability to kill tumor cells via apoptotic pathways, prevent the proliferation of prostate cancer cells, and alter the signaling pathways required for the maintenance of prostate cancer cells. However, further preclinical and clinical studies ought to be done to advance and eventually use these promising phytochemicals for the prevention and chemotherapy of human prostate cancer.


2018 ◽  
Vol 8 (1) ◽  
pp. 134 ◽  
Author(s):  
Kanako Kojima ◽  
Sanai Takahashi ◽  
Shungo Saito ◽  
Yoshihiro Endo ◽  
Tadashi Nittami ◽  
...  

2011 ◽  
Vol 10 (1) ◽  
pp. 112 ◽  
Author(s):  
Jianjun Zhou ◽  
Honghe Wang ◽  
Virginetta Cannon ◽  
Karen Wolcott ◽  
Hongbin Song ◽  
...  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e16576-e16576
Author(s):  
Marianna Kruithof-de Julio ◽  
Letizia Astrologo ◽  
Eugenio Zoni ◽  
Sofia Karkampouna ◽  
Peter C Gray ◽  
...  

e16576 Background: Prostate cancer is the second most common cancer in men worldwide. Lethality is normally associated with the consequences of metastasis rather than the primary tumor. In particular, bone is the most frequent site of metastasis and once prostate tumor cells are engrafted in the skeleton, curative therapy is no longer possible. Bone morphogenetic proteins (BMPs) play a critical role in bone physiology and pathology. However, little is known about the role of BMP9 and its signaling receptors, ALK1 and ALK2, in prostate cancer and bone metastasis. In this context, we investigate the impact of BMP9 on primary prostate cancer and derived bone metastasis. Methods: The human ALK1 extracellular domain (ECD) binds BMP9 and BMP10 with high affinity. In order to study the effect of BMP9 in vitro and in vivo we use a soluble chimeric protein, consisting of ALK1 ECD fused to human Fc (ALK1Fc), for preventing the activation of endogenous signaling. ALK1Fc sequesters BMP9 and BMP10, preserving the activation of ALK1 through other ligands. Results: We show that ALK1Fc reduces BMP9-mediated signaling and decreases proliferation of highly metastatic and tumor initiating human prostate cancer cells in vitro. In line with these observations, we demonstrate that ALK1Fc reduces tumor growth in vivo in an orthotopic transplantation model. The propensity of the primary prostate cancer to metastasize to the bone is also investigated. In particular, we report how the ALK1Fc influences the prostate cancer cells in vitro and in vivo when these are probed in different bone settings (co-culture with bone cells and intraosseous transplantation in mice). Conclusions: Our study provides the first demonstration that ALK1Fc inhibits prostate cancer cells growth identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. All together, these findings justify the ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.


2018 ◽  
Vol 50 (2) ◽  
pp. 798-809 ◽  
Author(s):  
Gang Shen ◽  
Jianchun Chen ◽  
Yongqiang Zhou ◽  
Zhenfan Wang ◽  
Zheng Ma ◽  
...  

Backgrounds/Aims: Bromodomain-containing protein 4 (BRD4) overexpression participates in prostate cancer progression by enhancing the transcriptional activity and expression of several key oncogenes. AZD5153 is a novel BRD4 inhibitor. Methods: Prostate cancer cells were treated with AZD5153. Cell survival was tested by MTT assay and clonogenicity assay. Cell proliferation was tested by [H3] DNA incorporation assay. Cell apoptosis was tested by caspase-3/-9 activity assay, Histone DNA ELISA assay, Annexin V FACS assay and TUNEL staining assay. Cell cycle progression was tested by propidium iodide (PI) FACS assay. Signaling was tested by Western blotting assay. The nude mice PC-3 xenograft model was applied to test AZD5153’s activity in vivo. Results: AZD5153 inhibited proliferation and survival of established and primary prostate cancer cells. AZD5153 induced apoptosis activation and cell cycle arrest in prostate cancer cells. AZD5153 was non-cytotoxic to the prostate epithelial cells. AZD5153 downregulated BRD4 targets (cyclin D1, Myc, Bcl-2, FOSL1 and CDK4) in PC-3 and primary prostate cancer cells. Further studies show that AKT could be the primary resistance factor of AZD5153. Pharmacological inhibition or genetic depletion of AKT induced BRD4 downregulation, sensitizing AZD5153-induced cytotoxicity in PC-3 cells. In vivo, AZD5153 oral administration inhibited PC-3 xenograft tumor growth in nude mice. Its anti-tumor activity was further enhanced with co-treatment of the AKT specific inhibitor MK-2206. Conclusion: Together, our results indicate a promising therapeutic value of the novel BRD4 inhibitor AZD5153 against prostate cancer cells.


Sign in / Sign up

Export Citation Format

Share Document