scholarly journals WS09.1 3D structures of the full length CFTR protein: combining theoretical and experimental data

2017 ◽  
Vol 16 ◽  
pp. S15-S16
Author(s):  
B. Hoffmann ◽  
I. Callebaut ◽  
J.-P. Mornon
2018 ◽  
Vol 75 (20) ◽  
pp. 3829-3855 ◽  
Author(s):  
Brice Hoffmann ◽  
Ahmad Elbahnsi ◽  
Pierre Lehn ◽  
Jean-Luc Décout ◽  
Fabio Pietrucci ◽  
...  

2019 ◽  
Author(s):  
Andrew M. Watkins ◽  
Rhiju Das

SummaryMethods to predict RNA 3D structures from sequence are needed to understand the exploding number of RNA molecules being discovered across biology. As assessed during community-wide RNA-Puzzles trials, Rosetta’s Fragment Assembly of RNA with Full-Atom Refinement (FARFAR) enables accurate prediction of complex folds, but it remains unclear how much human intervention and experimental guidance is needed to achieve this performance. Here, we present FARFAR2, a protocol integrating recent innovations with updated RNA fragment libraries and helix modeling. In 16 of 21 RNA-Puzzles revisited without experimental data or expert intervention, FARFAR2 recovers structures that are more accurate than the original models submitted by our group and other participants during the RNA-Puzzles trials. In five prospective tests, pre-registered FARFAR2 models for riboswitches and adenovirus VA-I achieved 3–8 Å RMSD accuracies. Finally, we present a server and three large model archives (FARFAR2-Classics, FARFAR2-Motifs, and FARFAR2-Puzzles) to guide future applications and advances.


2020 ◽  
Vol 21 (13) ◽  
pp. 4781
Author(s):  
Raffaella Melfi ◽  
Patrizia Cancemi ◽  
Roberta Chiavetta ◽  
Viviana Barra ◽  
Laura Lentini ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons (PTCs) responsible for a truncated CFTR protein and a more severe form of the disease. Aminoglycoside and PTC124 derivatives have been used for the read-through of PTCs to restore the full-length CFTR protein. However, in a precision medicine framework, the CRISPR/dCas13b-based molecular tool “REPAIRv2” (RNA Editing for Programmable A to I Replacement, version 2) could be a good alternative to restore the full-length CFTR protein. This RNA editing approach is based on the targeting of the deaminase domain of the hADAR2 enzyme fused to the dCas13b protein to a specific adenosine to be edited to inosine in the mutant mRNA. Targeting specificity is allowed by a guide RNA (gRNA) complementarily to the target region and recognized by the dCas13b protein. Here, we used the REPAIRv2 platform to edit the UGA PTC to UGG in different cell types, namely IB3-1 cells, HeLa, and FRT cells engineered to express H2BGFPopal and CFTRW1282X, respectively.


2021 ◽  
Author(s):  
Ken Hung-On Yu ◽  
Christina Huan Shi ◽  
Bo Wang ◽  
Savio Ho-Chit Chow ◽  
Grace Tin-Yun Chung ◽  
...  

AbstractCircular RNAs (circRNAs) are abundantly expressed in cancer. Their resistance to exonucleases enables them to have potentially stable interactions with different types of biomolecules. Alternative splicing can create different circRNA isoforms that have different sequences and unequal interaction potentials. The study of circRNA function thus requires knowledge of complete circRNA sequences. Here we describe psirc, a method that can identify full-length circRNA isoforms and quantify their expression levels from RNA sequencing data. We confirm the effectiveness and computational efficiency of psirc using both simulated and actual experimental data. Applying psirc on transcriptome profiles from nasopharyngeal carcinoma and normal nasopharynx samples, we discover and validate circRNA isoforms differentially expressed between the two groups. Compared to the assumed circular isoforms derived from linear transcript annotations, some of the alternatively spliced circular isoforms have 100 times higher expression and contain substantially fewer microRNA response elements, demonstrating the importance of quantifying full-length circRNA isoforms.


2021 ◽  
pp. gr.275348.121
Author(s):  
Ken Hung-On Yu ◽  
Christina Huan Shi ◽  
Bo Wang ◽  
Savio Ho-Chit Chow ◽  
Grace Tin-Yun Chung ◽  
...  

Circular RNAs (circRNAs) are abundantly expressed in cancer. Their resistance to exonucleases enables them to have potentially stable interactions with different types of biomolecules. Alternative splicing can create different circRNA isoforms that have different sequences and unequal interaction potentials. The study of circRNA function thus requires knowledge of complete circRNA sequences. Here we describe psirc, a method that can identify full-length circRNA isoforms and quantify their expression levels from RNA sequencing data. We confirm the effectiveness and computational efficiency of psirc using both simulated and actual experimental data. Applying psirc on transcriptome profiles from nasopharyngeal carcinoma and normal nasopharynx samples, we discover and validate circRNA isoforms differentially expressed between the two groups. Compared to the assumed circular isoforms derived from linear transcript annotations, some of the alternatively spliced circular isoforms have 100 times higher expression and contain substantially fewer microRNA response elements, demonstrating the importance of quantifying full-length circRNA isoforms.


2021 ◽  
Author(s):  
Cecilia Chavez-Garcia ◽  
Jerome Henin ◽  
Mikko Karttunen

The malfunction of the Methyl CpG binding protein 2 (MeCP2) is associated to the Rett syndrome, one of the most common causes of cognitive impairment in females. MeCP2 is an intrinsically disordered protein (IDP), making its experimental characterization a challenge. There is currently no structure available for the full-length MeCP2 in any of the databases, and only the structure of its MBD domain has been solved. We used this structure to build a full-length model of MeCP2 by completing the rest of the protein via ab initio modelling. Using a combination of all-atom and coarse-grained simulations, we characterized its structure and dynamics as well as the conformational space sampled by the ID and TRD domains in the absence of the rest of the protein. The present work is the first computational study of the full-length protein. Two main conformations were sampled in the coarse-grained simulations: a globular structure similar to the one observed in the all-atom force field and a two-globule conformation. Our all-atom model is in good agreement with the available experimental data, predicting amino acid W104 to be buried, amino acids R111 and R133 to be solvent accessible, and having 4.1% of α-helix content, compared to the 4% found experimentally. Finally, we compared the model predicted by AlphaFold to our Modeller model. The model was not stable in water and underwent further folding. Together, these simulations provide a detailed (if perhaps incomplete) conformational ensemble of the full-length MeCP2, which is compatible with experimental data and can be the basis of further studies, e.g., on mutants of the protein or its interactions with its biological partners.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Ashis K. Mazumder ◽  
Sujoy K. Saha

The thermohydraulic performance of turbulent flow of air through rectangular and square ribbed ducts with twisted-tape inserts has been experimentally studied. The performance is influenced by the twisted-tape-generated swirl flow and the boundary layer separation, reattachment, and flow recirculation due to the ribs. Correlations developed for friction factor and Nusselt number satisfactorily predict the experimental data. The performance of the ribbed ducts with full-length twisted-tape inserts is found to be better than only ribbed ducts and ducts with only twisted-tape inserts. The regularly spaced twisted-tape elements in specific cases significantly perform better than their full-length counterparts. However, the short-length twisted-tape performance is worse than the full-length twisted tapes.


2008 ◽  
Vol 7 ◽  
pp. S16
Author(s):  
J.P. Mornon ◽  
P. Lehn ◽  
I. Callebaut

2017 ◽  
Vol 91 (8) ◽  
Author(s):  
Holly Freedman ◽  
Michael R. Logan ◽  
Darren Hockman ◽  
Julia Koehler Leman ◽  
John Lok Man Law ◽  
...  

ABSTRACT Despite the recent success of newly developed direct-acting antivirals against hepatitis C, the disease continues to be a global health threat due to the lack of diagnosis of most carriers and the high cost of treatment. The heterodimer formed by glycoproteins E1 and E2 within the hepatitis C virus (HCV) lipid envelope is a potential vaccine candidate and antiviral target. While the structure of E1/E2 has not yet been resolved, partial crystal structures of the E1 and E2 ectodomains have been determined. The unresolved parts of the structure are within the realm of what can be modeled with current computational modeling tools. Furthermore, a variety of additional experimental data is available to support computational predictions of E1/E2 structure, such as data from antibody binding studies, cryo-electron microscopy (cryo-EM), mutational analyses, peptide binding analysis, linker-scanning mutagenesis, and nuclear magnetic resonance (NMR) studies. In accordance with these rich experimental data, we have built an in silico model of the full-length E1/E2 heterodimer. Our model supports that E1/E2 assembles into a trimer, which was previously suggested from a study by Falson and coworkers (P. Falson, B. Bartosch, K. Alsaleh, B. A. Tews, A. Loquet, Y. Ciczora, L. Riva, C. Montigny, C. Montpellier, G. Duverlie, E. I. Pecheur, M. le Maire, F. L. Cosset, J. Dubuisson, and F. Penin, J. Virol. 89:10333–10346, 2015, https://doi.org/10.1128/JVI.00991-15 ). Size exclusion chromatography and Western blotting data obtained by using purified recombinant E1/E2 support our hypothesis. Our model suggests that during virus assembly, the trimer of E1/E2 may be further assembled into a pentamer, with 12 pentamers comprising a single HCV virion. We anticipate that this new model will provide a useful framework for HCV envelope structure and the development of antiviral strategies. IMPORTANCE One hundred fifty million people have been estimated to be infected with hepatitis C virus, and many more are at risk for infection. A better understanding of the structure of the HCV envelope, which is responsible for attachment and fusion, could aid in the development of a vaccine and/or new treatments for this disease. We draw upon computational techniques to predict a full-length model of the E1/E2 heterodimer based on the partial crystal structures of the envelope glycoproteins E1 and E2. E1/E2 has been widely studied experimentally, and this provides valuable data, which has assisted us in our modeling. Our proposed structure is used to suggest the organization of the HCV envelope. We also present new experimental data from size exclusion chromatography that support our computational prediction of a trimeric oligomeric state of E1/E2.


Sign in / Sign up

Export Citation Format

Share Document