scholarly journals ePS1.03 Investigation of in vitro treatment response to CFTR modulators in patients with cystic fibrosis in a cross-sectional intestinal organoid study

2019 ◽  
Vol 18 ◽  
pp. S39-S40
Author(s):  
E. Furstova ◽  
A.S. Ramalho ◽  
S. Cuyx ◽  
M. Proesmans ◽  
L. Dupont ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3260
Author(s):  
Carla M. P. Ribeiro ◽  
Martina Gentzsch

Defective CFTR biogenesis and activity in cystic fibrosis airways leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. Most cystic fibrosis patients have at least one copy of the F508del CFTR mutation, which results in a protein retained in the endoplasmic reticulum and degraded by the proteosomal pathway. CFTR modulators, e.g., correctors, promote the transfer of F508del to the apical membrane, while potentiators increase CFTR activity. Corrector and potentiator double therapies modestly improve lung function, whereas triple therapies with two correctors and one potentiator indicate improved outcomes. Enhanced F508del rescue by CFTR modulators is achieved by exposing F508del/F508del primary cultures of human bronchial epithelia to relevant inflammatory stimuli, i.e., supernatant from mucopurulent material or bronchoalveolar lavage fluid from human cystic fibrosis airways. Inflammation enhances the biochemical and functional rescue of F508del by double or triple CFTR modulator therapy and overcomes abrogation of CFTR correction by chronic VX-770 treatment in vitro. Furthermore, the impact of inflammation on clinical outcomes linked to CFTR rescue has been recently suggested. This review discusses these data and possible mechanisms for airway inflammation-enhanced F508del rescue. Expanding the understanding of how airway inflammation improves CFTR rescue may benefit CF patients.


2020 ◽  
Vol 57 (1) ◽  
pp. 1902426 ◽  
Author(s):  
Anabela S. Ramalho ◽  
Eva Fürstová ◽  
Annelotte M. Vonk ◽  
Marc Ferrante ◽  
Catherine Verfaillie ◽  
...  

RationaleGiven the vast number of cystic fibrosis transmembrane conductance regulator (CFTR) mutations, biomarkers predicting benefit from CFTR modulator therapies are needed for subjects with cystic fibrosis (CF).ObjectivesTo study CFTR function in organoids of subjects with common and rare CFTR mutations and evaluate correlations between CFTR function and clinical data.MethodsIntestinal organoids were grown from rectal biopsies in a cohort of 97 subjects with CF. Residual CFTR function was measured by quantifying organoid swelling induced by forskolin and response to modulators by quantifying organoid swelling induced by CFTR correctors, potentiator and their combination. Organoid data were correlated with clinical data from the literature.ResultsAcross 28 genotypes, residual CFTR function correlated (r2=0.87) with sweat chloride values. When studying the same genotypes, CFTR function rescue by CFTR modulators in organoids correlated tightly with mean improvement in lung function (r2=0.90) and sweat chloride (r2=0.95) reported in clinical trials. We identified candidate genotypes for modulator therapy, such as E92K, Q237E, R334W and L159S. Based on organoid results, two subjects started modulator treatment: one homozygous for complex allele Q359K_T360K, and the second with mutation E60K. Both subjects had major clinical benefit.ConclusionsMeasurements of residual CFTR function and rescue of function by CFTR modulators in intestinal organoids correlate closely with clinical data. Our results for reference genotypes concur with previous results. CFTR function measured in organoids can be used to guide precision medicine in patients with CF, positioning organoids as a potential in vitro model to bring treatment to patients carrying rare CFTR mutations.


2019 ◽  
Vol 11 (488) ◽  
pp. eaau9748 ◽  
Author(s):  
Elizabeth B. Burgener ◽  
Johanna M. Sweere ◽  
Michelle S. Bach ◽  
Patrick R. Secor ◽  
Naomi Haddock ◽  
...  

Filamentous bacteriophage (Pf phage) contribute to the virulence of Pseudomonas aeruginosa infections in animal models, but their relevance to human disease is unclear. We sought to interrogate the prevalence and clinical relevance of Pf phage in patients with cystic fibrosis (CF) using sputum samples from two well-characterized patient cohorts. Bacterial genomic analysis in a Danish longitudinal cohort of 34 patients with CF revealed that 26.5% (n = 9) were consistently Pf phage positive. In the second cohort, a prospective cross-sectional cohort of 58 patients with CF at Stanford, sputum qPCR analysis showed that 36.2% (n = 21) of patients were Pf phage positive. In both cohorts, patients positive for Pf phage were older, and in the Stanford CF cohort, patients positive for Pf phage were more likely to have chronic P. aeruginosa infection and had greater declines in pulmonary function during exacerbations than patients negative for Pf phage presence in the sputum. Last, P. aeruginosa strains carrying Pf phage exhibited increased resistance to antipseudomonal antibiotics. Mechanistically, in vitro analysis showed that Pf phage sequesters these same antibiotics, suggesting that this mechanism may thereby contribute to the selection of antibiotic resistance over time. These data provide evidence that Pf phage may contribute to clinical outcomes in P. aeruginosa infection in CF.


Author(s):  
Stefanie Stallard ◽  
Masha G. Savelieff ◽  
Kyle Wierzbicki ◽  
Brendan Mullan ◽  
Zachary Miklja ◽  
...  

2020 ◽  
pp. 00448-2020
Author(s):  
L.K. Fawcett ◽  
C.E. Wakefield ◽  
S. Sivam ◽  
P.G. Middleton ◽  
P. Wark ◽  
...  

BackgroundPatient-oriented research approaches that reflect the needs and priorities of those most affected by health research outcomes, improves translation of research findings into practice. Development of targeted therapies for Cystic Fibrosis (CF) is a viable treatment option now for some eligible individuals despite the heterogeneous patient-specific therapeutic response. This has necessitated development of a clinical tool that predicts treatment response for individual patients. Patient-derived mini-organs (organoids) have been at the forefront of this development. However, little is known about their acceptability in CF patients and members of the public.MethodsWe used a cross-sectional observational design to conduct an online survey in people with CF, their carers and community comparisons. Acceptability was examined in five domains; 1-willingness to use organoids, 2-perceived advantages and disadvantages of organoids, acceptable 3-out-of-pocket costs, 4-turnaround time, and 5-source of tissue.Results188 participants completed the questionnaire, including adults with CF and parents of children with CF (90(48%)), and adults without CF and parents of children without CF (98(52%)). Use of organoids to guide treatment decisions in CF was acceptable to 86(95%) CF participants and 98 (100%) community participants. The most important advantage was that organoids may improve treatment selection, improving the patient's quality of life and life expectancy. The most important disadvantage was that the organoid recommended treatment may be unavailable or too expensive.ConclusionsThese findings indicate acceptance of patient-derived organoids as a tool to predict treatment response by the majority of people surveyed. This may indicate successful future implementation into healthcare systems.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Heledd H Jarosz-Griffiths ◽  
Thomas Scambler ◽  
Chi H Wong ◽  
Samuel Lara-Reyna ◽  
Jonathan Holbrook ◽  
...  

Previously, we showed that serum and monocytes from patients with CF exhibit an enhanced NLRP3-inflammasome signature with increased IL-18, IL-1β, caspase-1 activity and ASC speck release (Scambler et al. eLife 2019). Here we show that CFTR modulators down regulate this exaggerated proinflammatory response following LPS/ATP stimulation. In vitro application of ivacaftor/lumacaftor or ivacaftor/tezacaftor to CF monocytes showed a significant reduction in IL-18, whereas IL-1β was only reduced with ivacaftor/tezacaftor. Thirteen adults starting ivacaftor/lumacaftor and eight starting ivacaftor/tezacaftor were assessed over three months. Serum IL-18 and TNF decreased significantly with treatments, but IL-1β only declined following ivacaftor/tezacaftor. In (LPS/ATP-stimulated) PBMCs, IL-18/TNF/caspase-1 were all significantly decreased and IL-10 was increased with both combinations. Ivacaftor/tezacaftor alone showed a significant reduction in IL-1β and pro-IL-1β mRNA. This study demonstrates that these CFTR modulator combinations have potent anti-inflammatory properties, in addition to their ability to stimulate CFTR function, which could contribute to improved clinical outcomes.


2021 ◽  
Author(s):  
Andrew Berical ◽  
Rhianna Lee ◽  
Junjie Lu ◽  
Mary Lou Beermann ◽  
Jake LeSuer ◽  
...  

Cystic fibrosis (CF) is a monogenic lung disease caused by dysfunction of the cystic fibrosis transmembrane regulator (CFTR) anion channel, resulting in significant morbidity and mortality. The progress in elucidating the role of the CFTR channel using established animal and cell-based models led to the recent discovery of effective CFTR modulators for most individuals with CF. However, a subset of individuals with CF do not respond to these modulators and there is an urgent need to develop novel therapeutic strategies. In this study, we assembled a panel of iPSCs derived from individuals with common or rare variants representative of three distinct classes of CFTR dysfunction. To measure CFTR function in patient-specific iPSCs we adapted two established in vitro assays of CFTR function to iPSC-derived airway cells. In both a 3-D spheroid assay using forskolin-induced swelling as well as planar cultures composed of polarized mucociliary airway epithelial cells, we quantified CFTR baseline function and response to CFTR modulators and detected genotype-specific differences. Our results demonstrate the potential of the human iPSC platform as a research tool to study cystic fibrosis and in particular accelerate therapeutic development for CF caused by rare mutations.


2021 ◽  
Vol 11 (12) ◽  
pp. 1376
Author(s):  
Danya Muilwijk ◽  
Marlou Bierlaagh ◽  
Peter van Mourik ◽  
Jasmijn Kraaijkamp ◽  
Renske van der Meer ◽  
...  

The clinical response to cystic fibrosis transmembrane conductance regulator (CFTR) modulators is variable within people with cystic fibrosis (pwCF) homozygous for the F508del mutation. The prediction of clinical effect in individual patients would be useful to target therapy to those who would benefit from it. A multicenter observational cohort study was conducted including 97 pwCF (F508del/F508del), who started lumacaftor/ivacaftor (LUM/IVA) treatment before June 2018. In order to assess the associations of individual in vivo and in vitro biomarkers with clinical outcomes, we collected clinical data regarding sex, age, and sweat chloride concentration (SwCl) at baseline and after six months of LUM/IVA; the percent predicted forced expiratory volume in 1 s (ppFEV1) and the number of pulmonary exacerbations (PEx) during the three years before up to three years after modulator initiation; and the forskolin-induced swelling (FIS) responses to LUM/IVA, quantified in intestinal organoids. On a group level, the results showed an acute change in ppFEV1 after LUM/IVA initiation (2.34%, 95% CI 0.85–3.82, p = 0.003), but no significant change in annual ppFEV1 decline in the three years after LUM/IVA compared to the three years before (change: 0.11% per year, 95%CI: −1.94–2.19, p = 0.913). Neither of these two outcomes was associated with any of the candidate predictors on an individual level. The median number of pulmonary exacerbations (PEx) per patient year did not significantly change in the three years after LUM/IVA compared to the years before (median: 0.33/patient year, IQR: 0–0.67 before vs. median: 0/patient year, IQR: 0–0.67 after p = 0. 268). The PEx rate after modulator initiation was associated with the PEx rate before (IRR: 2.26, 95%CI: 1.67–3.08, p < 0.001), with sex (males vs. females IRR: 0.36, 95%CI: 0.21–0.63, p = 0.001) and with sweat chloride concentration (SwCl) at baseline (IRR: 0.96, 95%CI: 0.94–0.98, p = 0.001). The change in SwCl was also significant (−22.9 mmol/L (95%CI: −27.1–−18.8, p < 0.001) and was associated with SwCl at baseline (−0.64, 95%CI: −0.90–−0.37, p < 0.001) and with sex (males vs. females 8.32, 95%CI: 1.82–14.82, p = 0.013). In conclusion, ppFEV1 decline after CFTR modulator initiation remains difficult to predict in individual patients in a real-world setting, with limited effectiveness for double CFTR modulator therapies. The PEx rate prior to CFTR modulator treatment initiation, sex and SwCl at baseline could be potential predictors of long-term PEx rate and of changes in SwCl after modulator initiation.


2019 ◽  
Vol 5 (2) ◽  
pp. 00082-2019 ◽  
Author(s):  
Jennifer L. Taylor-Cousar ◽  
Marcus A. Mall ◽  
Bonnie W. Ramsey ◽  
Edward F. McKone ◽  
Elizabeth Tullis ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator gene (CFTR) that result in diminished quantity and/or function of the CFTR anion channel. F508del-CFTR, the most common CF-causing mutation (found in ∼90% of patients), causes severe processing and trafficking defects, resulting in decreased CFTR quantity and function. CFTR modulators are medications that increase the amount of mature CFTR protein (correctors) or enhance channel function (potentiators) at the cell surface.Combinations of CFTR correctors and potentiators (i.e. lumacaftor/ivacaftor, tezacaftor/ivacaftor) have demonstrated clinical benefit in subsets of patients. However, none are approved for patients with CF heterozygous for F508del-CFTR and a minimal function mutation, i.e. a mutation that produces either no protein or protein that is unresponsive to currently approved CFTR modulators. Next-generation CFTR correctors VX-659 and VX-445, each in triple combination with tezacaftor and ivacaftor, improve CFTR processing, trafficking and function in vitro and have demonstrated clinical improvements in phase 2 studies in patients with CF with one or two F508del-CFTR alleles.Here, we present the rationale and design of four randomised phase 3 studies, and their open-label extensions, evaluating VX-659 (ECLIPSE) or VX-445 (AURORA) plus tezacaftor and ivacaftor in patients with one or two F508del-CFTR alleles.


2021 ◽  
Vol 8 ◽  
Author(s):  
Eyleen de Poel ◽  
Sacha Spelier ◽  
Ricardo Korporaal ◽  
Ka Wai Lai ◽  
Sylvia F. Boj ◽  
...  

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have transformed the treatment of cystic fibrosis (CF) by targeting the basis of the disease. In particular, treatment regimen consisting of multiple compounds with complementary mechanisms of action have been shown to result in optimal efficacy. Here, we assessed the efficacy of combinations of the CFTR modulators ABBV/GLPG-2222, GLPG/ABBV-2737 and ABBV/GLPG-2451, and compared it to VX-770/VX-809 in 28 organoid lines heterozygous for F508del allele and a class I mutation and seven homozygous F508del organoid lines. The combination ABBV/GLPG-2222/ABBV-2737/ABBV/GLPG-2451 showed increased efficacy over VX-770/VX-809 for most organoids, despite considerable variation in efficacy between the different organoid cultures. These differences in CFTR restoration between organoids with comparable genotypes underline the relevance of continuing to optimize the ABBV/GLPG‐Triple therapy, as well as the in vitro characterization of efficacy in clinically relevant models.


Sign in / Sign up

Export Citation Format

Share Document