scholarly journals 474: Altered nutritional environment during respiratory viral co-infection affects Pseudomonas aeruginosa biofilm formation and interspecies interactions

2021 ◽  
Vol 20 ◽  
pp. S223-S224
Author(s):  
A. Welp ◽  
J. Melvin ◽  
P. Thibodeau ◽  
J. Bomberger
mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Catherine R. Armbruster ◽  
Daniel J. Wolter ◽  
Meenu Mishra ◽  
Hillary S. Hayden ◽  
Matthew C. Radey ◽  
...  

ABSTRACTWhile considerable research has focused on the properties of individual bacteria, relatively little is known about how microbial interspecies interactions alter bacterial behaviors and pathogenesis.Staphylococcus aureusfrequently coinfects with other pathogens in a range of different infectious diseases. For example, coinfection byS. aureuswithPseudomonas aeruginosaoccurs commonly in people with cystic fibrosis and is associated with higher lung disease morbidity and mortality.S. aureussecretes numerous exoproducts that are known to interact with host tissues, influencing inflammatory responses. The abundantly secretedS. aureusstaphylococcal protein A (SpA) binds a range of human glycoproteins, immunoglobulins, and other molecules, with diverse effects on the host, including inhibition of phagocytosis ofS. aureuscells. However, the potential effects of SpA and otherS. aureusexoproducts on coinfecting bacteria have not been explored. Here, we show thatS. aureus-secreted products, including SpA, significantly alter two behaviors associated with persistent infection. We found that SpA inhibited biofilm formation by specificP. aeruginosaclinical isolates, and it also inhibited phagocytosis by neutrophils of all isolates tested. Our results indicate that these effects were mediated by binding to at least twoP. aeruginosacell surface structures—type IV pili and the exopolysaccharide Psl—that confer attachment to surfaces and to other bacterial cells. Thus, we found that the role of a well-studiedS. aureusexoproduct, SpA, extends well beyond interactions with the host immune system. Secreted SpA alters multiple persistence-associated behaviors of another common microbial community member, likely influencing cocolonization and coinfection with other microbes.IMPORTANCEBacteria rarely exist in isolation, whether on human tissues or in the environment, and they frequently coinfect with other microbes. However, relatively little is known about how microbial interspecies interactions alter bacterial behaviors and pathogenesis. We identified a novel interaction between two bacterial species that frequently infect together—Staphylococcus aureusandPseudomonas aeruginosa. We show that theS. aureus-secreted protein staphylococcal protein A (SpA), which is well-known for interacting with host targets, also binds to specificP. aeruginosacell surface molecules and alters two persistence-associatedP. aeruginosabehaviors: biofilm formation and uptake by host immune cells. BecauseS. aureusfrequently precedesP. aeruginosain chronic infections, these findings reveal how microbial community interactions can impact persistence and host interactions during coinfections.


2021 ◽  
Vol 9 (3) ◽  
pp. 569
Author(s):  
Kyosuke Yamamoto ◽  
Hiroyuki Kusada ◽  
Yoichi Kamagata ◽  
Hideyuki Tamaki

An opportunistic pathogen Pseudomonas aeruginosa has a versatile phenotype and high evolutionary potential to adapt to various natural habitats. As the organism normally lives in spatially heterogeneous and polymicrobial environments from open fields to the inside of hosts, adaptation to abiotic (spatial heterogeneity) and biotic factors (interspecies interactions) is a key process to proliferate. However, our knowledge about the adaptation process of P. aeruginosa in spatially heterogeneous environments associated with other species is limited. We show herein that the evolutionary dynamics of P. aeruginosa PAO1 in spatially heterogeneous environments with Staphylococcus aureus known to coexist in vivo is dictated by two distinct core evolutionary trajectories: (i) the increase of biofilm formation and (ii) the resistance to infection by a filamentous phage which is retained in the PAO1 genome. Hyperbiofilm and/or pili-deficient phage-resistant variants were frequently selected in the laboratory evolution experiment, indicating that these are key adaptive traits under spatially structured conditions. On the other hand, the presence of S. aureus had only a marginal effect on the emergence and maintenance of these variants. These results show key adaptive traits of P. aeruginosa and indicate the strong selection pressure conferred by spatial heterogeneity, which might overwhelm the effect of interspecies interactions.


Author(s):  
Baydaa Hussein ◽  
Zainab A. Aldhaher ◽  
Shahrazad Najem Abdu-Allah ◽  
Adel Hamdan

Background: Biofilm is a bacterial way of life prevalent in the world of microbes; in addition to that it is a source of alarm in the field of health concern. Pseudomonas aeruginosa is a pathogenic bacterium responsible for all opportunistic infections such as chronic and severe. Aim of this study: This paper aims to provide an overview of the promotion of isolates to produce a biofilm in vitro under special circumstances, to expose certain antibiotics to produce phenotypic evaluation of biofilm bacteria. Methods and Materials: Three diverse ways were used to inhibited biofilm formation of P.aeruginosa by effect of phenolic compounds extracts from strawberries. Isolates produced biofilm on agar MacConkey under certain circumstances. Results: The results showed that all isolates were resistant to antibiotics except sensitive to azithromycin (AZM, 15μg), and in this study was conducted on three ways to detect the biofilm produced, has been detected by the biofilm like Tissue culture plate (TCP), Tube method (TM), Congo Red Agar (CRA). These methods gave a clear result of these isolates under study. Active compounds were analyzed in both extracts by Gas Chromatography-mass Spectrometry which indicate High molecular weight compound with a long hydrocarbon chain. Conclusion: Phenolic compounds could behave as bioactive material and can be useful to be used in pharmaceutical synthesis. Phenolic contents which found in leaves and fruits extracts of strawberries shows antibacterial activity against all strains tested by the ability to reduce the production of biofilm formation rate.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098774
Author(s):  
Jinpeng Zou ◽  
Yang Liu ◽  
Ruiwei Guo ◽  
Yu Tang ◽  
Zhengrong Shi ◽  
...  

The drug resistance of Pseudomonas aeruginosa is a worldwide problem due to its great threat to human health. A crude extract of Angelica dahurica has been proved to have antibacterial properties, which suggested that it may be able to inhibit the biofilm formation of P. aeruginosa; initial exploration had shown that the crude extract could inhibit the growth of P. aeruginosa effectively. After the adaptive dose of coumarin was confirmed to be a potential treatment for the bacteria’s drug resistance, “coumarin-antibiotic combination treatments” (3 coumarins—simple coumarin, imperatorin, and isoimperatorin—combined with 2 antibiotics—ampicillin and ceftazidime) were examined to determine their capability to inhibit P. aeruginosa. The final results showed that (1) coumarin with either ampicillin or ceftazidime significantly inhibited the biofilm formation of P. aeruginosa; (2) coumarin could directly destroy mature biofilms; and (3) the combination treatment can synergistically enhance the inhibition of biofilm formation, which could significantly reduce the usage of antibiotics and bacterial resistance. To sum up, a coumarin-antibiotic combination treatment may be a potential way to inhibit the biofilm growth of P. aeruginosa and provides a reference for antibiotic resistance treatment.


Sign in / Sign up

Export Citation Format

Share Document