Evaluation of usability and accuracy of prostate cancer risk calculators in prediction of high grade prostate cancer and assessment of extraprostatic and seminal vesicles invasion as well as the risk of lymph nodes metastasis

2018 ◽  
Vol 17 (12) ◽  
pp. e2640
Author(s):  
K. Kulik ◽  
S. Staniszewski ◽  
M. Modrzejewski ◽  
R. Brzóska ◽  
T. Drewa ◽  
...  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Johanna Tolksdorf ◽  
Michael W. Kattan ◽  
Stephen A. Boorjian ◽  
Stephen J. Freedland ◽  
Karim Saba ◽  
...  

Abstract Background Online clinical risk prediction tools built on data from multiple cohorts are increasingly being utilized for contemporary doctor-patient decision-making and validation. This report outlines a comprehensive data science strategy for building such tools with application to the Prostate Biopsy Collaborative Group prostate cancer risk prediction tool. Methods We created models for high-grade prostate cancer risk using six established risk factors. The data comprised 8492 prostate biopsies collected from ten institutions, 2 in Europe and 8 across North America. We calculated area under the receiver operating characteristic curve (AUC) for discrimination, the Hosmer-Lemeshow test statistic (HLS) for calibration and the clinical net benefit at risk threshold 15%. We implemented several internal cross-validation schemes to assess the influence of modeling method and individual cohort on validation performance. Results High-grade disease prevalence ranged from 18% in Zurich (1863 biopsies) to 39% in UT Health San Antonio (899 biopsies). Visualization revealed outliers in terms of risk factors, including San Juan VA (51% abnormal digital rectal exam), Durham VA (63% African American), and Zurich (2.8% family history). Exclusion of any cohort did not significantly affect the AUC or HLS, nor did the choice of prediction model (pooled, random-effects, meta-analysis). Excluding the lowest-prevalence Zurich cohort from training sets did not statistically significantly change the validation metrics for any of the individual cohorts, except for Sunnybrook, where the effect on the AUC was minimal. Therefore the final multivariable logistic model was built by pooling the data from all cohorts using logistic regression. Higher prostate-specific antigen and age, abnormal digital rectal exam, African ancestry and a family history of prostate cancer increased risk of high-grade prostate cancer, while a history of a prior negative prostate biopsy decreased risk (all p-values < 0.004). Conclusions We have outlined a multi-cohort model-building internal validation strategy for developing globally accessible and scalable risk prediction tools.


2013 ◽  
Vol 7 (5-6) ◽  
pp. 333 ◽  
Author(s):  
Michael Chua ◽  
M.C.D. Sio ◽  
M.C. Sorongon ◽  
M.L. Morales Jr.

Objective: Our objective was to systematically analyze the evidence for an association between serum level long chain omega-3 polyunsaturated fatty acid (n-3 PUFA) and prostate cancer risk from human epidemiological studies.Study Procedures: We searched biomedical literature databases up to November 2011 and included epidemiological studies with description of long chain n-3 PUFA and incidence of prostate cancer in humans. Critical appraisal was done by two independent reviewers. Data were pooled using the general variance-based method with random-effects model; effect estimates were expressed as risk ratio with 95% confidence interval (CI). Heterogeneity was assessed by Chi2 and quantified by I2, publication bias was also determined.Results: In total, 12 studies were included. Significant negative association was noted between high serum level of n-3 PUFA docosapentaenoicacid (DPA) and total prostate cancer risk (RR:0.756;95% CI 0.599, 0.955; p = 0.019). Likewise, a positive association between high blood level of fish oil contents, eicosapentaenoicacid (EPA) and docosahexaenoic acid (DHA), and high-grade prostate tumour incidence (RR:1.381; 95% CI 1.050, 1.817; p = 0.021) was noted; however, this finding was evident only after adjustment was done on interstudy variability through the removal of a lower quality study from the pool.Conclusions: High serum levels of long chain n-3 PUFA DPA is associated with reduced total prostate cancer risk. While high blood level of EPA and DHA is possibly associated with increased high-grade prostate tumour risk.


2014 ◽  
Vol 66 (6) ◽  
pp. 1133-1138 ◽  
Author(s):  
Jay H. Fowke ◽  
Lauren Howard ◽  
Gerald L. Andriole ◽  
Stephen J. Freedland

10.2196/16322 ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. e16322
Author(s):  
I-Hsuan Alan Chen ◽  
Chi-Hsiang Chu ◽  
Jen-Tai Lin ◽  
Jeng-Yu Tsai ◽  
Chia-Cheng Yu ◽  
...  

Background Mobile health apps have emerged as useful tools for patients and clinicians alike, sharing health information or assisting in clinical decision-making. Prostate cancer (PCa) risk calculator mobile apps have been introduced to assess risks of PCa and high-grade PCa (Gleason score ≥7). The Rotterdam Prostate Cancer Risk Calculator and Coral–Prostate Cancer Nomogram Calculator apps were developed from the 2 most-studied PCa risk calculators, the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the North American Prostate Cancer Prevention Trial (PCPT) risk calculators, respectively. A systematic review has indicated that the Rotterdam and Coral apps perform best during the prebiopsy stage. However, the epidemiology of PCa varies among different populations, and therefore, the applicability of these apps in a Taiwanese population needs to be evaluated. This study is the first to validate the PCa risk calculator apps with both biopsy and prostatectomy cohorts in Taiwan. Objective The study’s objective is to validate the PCa risk calculator apps using a Taiwanese cohort of patients. Additionally, we aim to utilize postprostatectomy pathology outcomes to assess the accuracy of both apps with regard to high-grade PCa. Methods All male patients who had undergone transrectal ultrasound prostate biopsies in a single Taiwanese tertiary medical center from 2012 to 2018 were identified retrospectively. The probabilities of PCa and high-grade PCa were calculated utilizing the Rotterdam and Coral apps, and compared with biopsy and prostatectomy results. Calibration was graphically evaluated with the Hosmer-Lemeshow goodness-of-fit test. Discrimination was analyzed utilizing the area under the receiver operating characteristic curve (AUC). Decision curve analysis was performed for clinical utility. Results Of 1134 patients, 246 (21.7%) were diagnosed with PCa; of these 246 patients, 155 (63%) had high-grade PCa, according to the biopsy results. After confirmation with prostatectomy pathological outcomes, 47.2% (25/53) of patients were upgraded to high-grade PCa, and 1.2% (1/84) of patients were downgraded to low-grade PCa. Only the Rotterdam app demonstrated good calibration for detecting high-grade PCa in the biopsy cohort. The discriminative ability for both PCa (AUC: 0.779 vs 0.687; DeLong’s method: P<.001) and high-grade PCa (AUC: 0.862 vs 0.758; P<.001) was significantly better for the Rotterdam app. In the prostatectomy cohort, there was no significant difference between both apps (AUC: 0.857 vs 0.777; P=.128). Conclusions The Rotterdam and Coral apps can be applied to the Taiwanese cohort with accuracy. The Rotterdam app outperformed the Coral app in the prediction of PCa and high-grade PCa. Despite the small size of the prostatectomy cohort, both apps, to some extent, demonstrated the predictive capacity for true high-grade PCa, confirmed by the whole prostate specimen. Following our external validation, the Rotterdam app might be a good alternative to help detect PCa and high-grade PCa for Taiwanese men.


Sign in / Sign up

Export Citation Format

Share Document