Postulation of Seedling Resistance Genes in 20 Wheat Cultivars to Yellow Rust (Puccinia striiformis f. sp. tritici)

2009 ◽  
Vol 8 (12) ◽  
pp. 1429-1439 ◽  
Author(s):  
Jing FENG ◽  
Zhen-yu ZHANG ◽  
Rui-ming LIN ◽  
Shi-chang XU
Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 499-504 ◽  
Author(s):  
A. H. Yahyaoui ◽  
M. S. Hakim ◽  
M. El Naimi ◽  
N. Rbeiz

Virulence-avirulence phenotypes of Puccinia striiformis isolates collected in Lebanon and Syria were determined on seedlings of the wheat-yellow rust differential genotypes. We found 25 and 11 physiologic races over 6 years (1994 to 1999) in Syria and Lebanon, respectively. The composition of physiologic races found in Syria and Lebanon differed greatly between 1994 and 1999. Races identified in 1999, such as 230E150 and 230E134, have wider spectra of virulence on resistant genotypes than races collected in 1994. In Lebanon, three races were found in 1994 compared with six races in 1999. Yellow rust differential genotypes were used in a trap nursery to monitor yellow rust populations under natural conditions. Races identified from cultivars in the trap nursery in Syria and Lebanon, and from land race cultivars in Iraq, were recovered among the races identified from farm fields. Yellow rust samples were collected from Yemen, and none of the races identified from Yemen samples were identical to those in Syria and Lebanon. Virulence frequencies in the yellow rust population on the differential genotypes tested in the trap nurseries were above 70% for some resistance genes. Yellow rust populations in Syria and Lebanon have diverse virulence phenotypes. P. striiformis populations appear to be changing over, and this would be an important consideration for wheat breeding programs in the region.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mercy Wamalwa ◽  
Ruth Wanyera ◽  
Julian Rodriguez-Algaba ◽  
Lesley Boyd ◽  
James Owuoche ◽  
...  

Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a major threat to wheat (Triticum spp.) production worldwide. The objective of this study was to determine the virulence of Pst races prevalent in the main wheat growing regions of Kenya, which includes Mt. Kenya, Eastern Kenya, and the Rift Valley (Central, Southern, and Northern Rift). Fifty Pst isolates collected from 1970 to 1992 and from 2009 to 2014 were virulence phenotyped using stripe rust differential sets, and 45 isolates were genotyped with sequence characterized amplified region (SCAR) markers to differentiate among the isolates and identify aggressive strains PstS1 and PstS2. Virulence corresponding to stripe rust resistance genes Yr1, Yr2, Yr3, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27 and the seedling resistance in genotype Avocet S were detected. Ten races were detected in the Pst samples obtained from 1970 to 1992, and three additional races were detected from 2009 to 2014, with a single race being detected in both periods. The SCAR markers detected both Pst1 and Pst2 strains in the collection. Increasing Pst virulence was found in the Kenyan Pst population, and that diverse Pst race groups dominated different wheat growing regions. Moreover, recent Pst races in east Africa indicated possible migration of some race groups into Kenya from other regions. This study is important in understanding Pst evolution and virulence diversity and useful in breeding wheat cultivars with effective resistance to stripe rust. Keywords: pathogenicity, Puccinia f. sp. tritici stripe (yellow) rust, Triticum aestivum


2020 ◽  
Author(s):  
Xian Xin Wu ◽  
Yue Gao ◽  
Qiang Bian ◽  
Qian Sun ◽  
Xin Yu Ni ◽  
...  

Abstract Background: Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici ( Bgt ), is a serious disease of wheat worldwide that can cause significant yield losses. Growing resistant cultivars is the most cost-effective and eco-soundly strategy to manage the disease. Therefore, a high breeding priority is to identify genes that can be readily used either singly or in combination for effective resistance to powdery mildew and alos in combination with genes for resistance to other diseases. Yunnan Province, with complex and diverse ecological environments and climates, is one of the main wheat growing regions in China. This region provides initial inoculum for starting epidemics of wheat powdery mildew in the region and other regions and thus, plays a key role in the regional and large-scale epidemics of the disease throughout China. The objectives of this study were to evaluate seedling resistance of 69 main wheat cultivars to powdery mildew and to determine the presence of resistance genes Pm3 , Pm8 , Pm13 , Pm16 , and Pm21 in these cultivars using gene specific DNA markers. Results: Evaluation of 69 wheat cultivars with six Bgt isolates showed that only four cultivars were resistant to all tested isolates, indicating that the overall level of powdery mildew resistance of Yunnan wheat cultivars is inadequate. The molecular marker results showed that 27 cultivars likely have at least one of these genes. Six cultivars were found likely to have Pm3 , 18 likely to have Pm8 , 5 likely to have Pm16 , and 3 likely to have Pm21 . No cultivar was found to carry Pm13 . Conclusion: The information on the presence of the Pm resistance genes in Yunnan wheat cultivars can be used in future wheat disease breeding programs. In particular, cultivars carrying Pm21 , which is effective against all Bgt races in China, should be pyramided with other effective genes to developing new cultivars with durable resistance to powdery mildew. Keywords: Blumeria graminis f. sp. tritici , Pm gene, molecular markers, wheat


2013 ◽  
Vol 53 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Safar Ali Safavi ◽  
Assadollah Babai Ahari ◽  
Farzad Afshari ◽  
Mahdi Arzanlou

Abstract Race-specific resistance of barley (Hordeum vulgare L.) to the yellow rust caused by Puccinia striiformis f. sp. hordei, has been reported to be short-lived. Slow rusting resistance has been reported to last for a long time. Twenty Iranian barley cultivars along with resistant and susceptible controls were tested during the 2009-2010 and the 2010-2011 cropping seasons, in field plots at the Ardabil Agricultural Research Station (Iran). The cultivars were tested to identify slow rusting genotypes through epidemiological variables which included: final rust severity (FRS), apparent infection rate (r), relative area under the disease progress curve (rAUDPC), and coefficient of infection (CI). Moreover, differential sets were evaluated in order to determine effective and ineffective resistance genes to barley yellow rust. Results of the mean comparison of resistance parameters showed that cultivars Makouee, Dasht, Fasih, and Arass had low values of FRS, CI, r and rAUDPC compared with susceptible cultivars. The cultivars Walfajre, Abidar and Sahand which had moderate values of the different parameters, were marked as possessing a moderate level of slow rusting. The rest of the cultivars which had high values of different quantitative parameters, were grouped as having a low level of slow rusting or as susceptible. The correlation coefficient between different parameters of slow rusting was significantly high (r = 0.83-0.98). The virulence profile of the prevalent races revealed that rpsEm1, rpsEm2, rpsHF, Rps4, rpsVa1, rpsVa2, rpsAst were effective, and rps2, Rps1.b were ineffective resistance genes during the two year testing period.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1206-1212
Author(s):  
Bingyao Chu ◽  
Lujia Yang ◽  
Cuicui Wang ◽  
Yilin Gu ◽  
Kai Yuan ◽  
...  

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most destructive diseases of wheat worldwide. Sichuan Province plays an important role in interregional epidemics in China. Application of host resistance is important in disease management, and efficient approaches to evaluate resistance level are necessary to obtain useful varieties. In this study, 100 wheat cultivars (lines) growing in Sichuan were selected to evaluate their resistance to stripe rust. Field experiments were conducted with a mixture of three P. striiformis f. sp. tritici races for inoculations at seeding and adult stages in the 2014 to 2015 season and the 2016 to 2017 season. Leaf samplings were conducted four times during the latent period at early growth stage of wheat. The sampled leaves were processed to extract DNA. The DNA of both wheat and P. striiformis f. sp. tritici was quantified using real-time quantitative polymerase chain reaction, and the molecular disease index (MDI) was used to evaluate the resistance level. The area under the disease progress curve in terms of disease index (AUDPC-DI) was obtained for each studied cultivar (line) in the fields. Among the 100 studied cultivars (lines), 61% of them showed seedling resistance, and 63 and 65% showed adult resistance in the 2014 to 2015 and 2016 to 2017 seasons, respectively, based on the infection type. High consistency in resistance grouping by cluster analysis as the percentage of the studied cultivar (line) belonging to the same group based on AUDPC-DI data and based on MDI data was obtained. The correlations between AUDPC-DI and MDI from samples collected on 9 and 14 or 15 days after inoculation during the latent period were all significant at P < 0.01. This study provided a new and efficient method for evaluation of varietal resistance to wheat stripe rust.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10425
Author(s):  
Xianxin Wu ◽  
Qiang Bian ◽  
Yue Gao ◽  
Xinyu Ni ◽  
Yanqiu Sun ◽  
...  

Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a serious disease of wheat worldwide that can cause significant yield losses. Growing resistant cultivars is the most cost-effective and eco-soundly strategy to manage the disease. Therefore, a high breeding priority is to identify genes that can be readily used either singly or in combination for effective resistance to powdery mildew and also in combination with genes for resistance to other diseases. Yunnan Province, with complex and diverse ecological environments and climates, is one of the main wheat growing regions in China. This region provides initial inoculum for starting epidemics of wheat powdery mildew in the region and other regions and thus, plays a key role in the regional and large-scale epidemics of the disease throughout China. The objectives of this study were to evaluate seedling resistance of 69 main wheat cultivars to powdery mildew and to determine the presence of resistance genes Pm3, Pm8, Pm13, Pm16, and Pm21in these cultivars using gene specific DNA markers. Evaluation of 69 wheat cultivars with six Bgt isolates showed that only four cultivars were resistant to all tested isolates, indicating that the overall level of powdery mildew resistance of Yunnan wheat cultivars is inadequate. The molecular marker results showed that 27 cultivars likely have at least one of these genes. Six cultivars were found likely to have Pm3,18 likely to have Pm8,5 likely to have Pm16,and 3 likely to have Pm21. No cultivar was found to carry Pm13. The information on the presence of the Pmresistance genes in Yunnan wheat cultivars can be used in future wheat disease breeding programs. In particular, cultivars carrying Pm21, which is effective against all Bgtraces in China, should be pyramided with other effective genes to developing new cultivars with durable resistance to powdery mildew.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


2020 ◽  
Author(s):  
Rong Liu ◽  
Jing Lu ◽  
Mei Du ◽  
Min Zhou ◽  
Mingxiu Wang ◽  
...  

Abstract Background: Stripe rust or yellow rust (Yr), caused by Puccinia striiformis f. sp. Tritici (Pst), is one of the most globally devastating fungal disease that significantly reduces yield and quality in wheat (Triticum aestivum). Although some Yr genes have been successfully used in wheat breeding and a little number of them have been cloned, large of the regulating networks and the molecular mechanisms of Pst resistance remains unknown. In this study, a pair of Yr-gene pyramiding line L58 and its background parent cv. Chuanyu12 (CY12) were used to study the transcriptome profiles after inoculated with Pst physiological race CYR34. Results: The results revealed that the different expression genes (DEGs) were significantly enriched in phenylpropanoid biosynthesis, phenylalanine metabolism, plant-pathogen interaction and MAPK signaling pathways after Pst-CYR34 inoculation. Compared with CY12, L58 showed greater up-regulated DEGs in those pathways by Pst infection at 24hpi. However, these DEGs became lower expression in L58 and opposite expression in CY12 at 7dpi. Besides, the activities of enzymes (PAL, POD) and products of phenylpropanoid pathway (lignin content) were significantly increased in both CY12 and L58, and the increase was greater and faster in the resistant line L58. Some candidate genes and transcription factors (TFs) associated with Pst resistance were identified, including LRR receptor-like serine/threonine protein kinase, disease resistance protein, MYB, NAC and WRKY transcription factors involved in the fine-tuning of Pst infection responses. Conclusions: Our results give insights into the regulating networks of Pst resistance and pave the way for durable resistant breeding in bread wheat.


Sign in / Sign up

Export Citation Format

Share Document