scholarly journals Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties

2014 ◽  
Vol 7 (12) ◽  
pp. 968-976 ◽  
Author(s):  
Thirunavukkarasu Santhoshkumar ◽  
Abdul Abdul Rahuman ◽  
Chidambaram Jayaseelan ◽  
Govindasamy Rajakumar ◽  
Sampath Marimuthu ◽  
...  
2022 ◽  
Vol 34 (2) ◽  
pp. 409-414
Author(s):  
N. Usha Rani ◽  
P. Pavani ◽  
P.T.S.R.K. Prasad Rao

Titanium nanoparticles are toxic to bacteria and have a widespread applications in different fields of research. Hence the present study aimed to synthesize the titanium dioxide nanoparticles by adopting green synthesis methodology using Kigelia africana leave extract as a biological reducing agent. The UV absorption spectra show characteristic absorption maxima corresponding to TiO2 nanoparticles at a wavelength of 512 nm confirms the formation of nanosized tin particles. The FT-IR spectrum of TiO2 nanoparticles show absorption bands at 3609 cm-1 and 3227 cm-1 corresponding to O-H stretching in alcoholic and carboxylic compounds, respectively. Absorption peaks at 1607, 2834, 1654 and 1324 cm-1 correspond to aromatic C=C vibrations, C-H stretching in aldehydes, C-H bending vibrations and aromatic C-N stretching vibrations, respectively. This confirms the involvement of bioactive compounds from the plant extract. The SEM and EDX studies confirmed that the nanoparticles are spherical to oval shape with an average particle size of 46 nm. The metal content in the nanoparticles was found to be 58.71%. The synthesized nanoparticles have potential growth inhibition activity against Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). The DPPH radical scavenging activity of the nanoparticles synthesized was compared with that of aqueous leaf extract and standard ascorbic acid and proved that the nanoparticles have enhanced activity than aqueous leaf extract. The IC50 of the leaf extract, nanoparticles and the standard was found to be 31.55, 75.82 and 84.95 μg/mL, respectively. Kigelia africana leaf is shown in this work to be a valuable bioagent in the biosynthesis of TiO2 nanoparticles with increased biological activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
S. Rajeshkumar ◽  
J. Santhoshkumar ◽  
Leta Tesfaye Jule ◽  
Krishnaraj Ramaswamy

Phytosynthesis particles are the efficient activity of biomedical and environmental. In this present study, the green synthesis of titanium dioxide (TiO2) nanoparticles using the king of bitter herbal plant Andrographis paniculata was synthesized and characterized using XRD, SEM, HRTEM, AFM, and antimicrobial, antioxidant, and antidiabetic activities. The size of the particles HRTEM shows 50 nm, and SEM shows the spherical shape, which reveals the synthesis of TiO2 nanoparticles. XRD spectrum shows crystallinity of nanoparticles, and an average size is calculated about 22.97 nm. The phytosynthesis TiO2 shows the antioxidant and antidiabetic activities. Similarly, toxicity studies have demonstrated the hatching and viability LD 50 value of TiO2 250 μg/L. The current study’s findings suggested that phytosynthesis TiO2 using extract of Andrographis paniculata exposure to potential hazard factors to biomedical and environmental uses.


2019 ◽  
Vol 10 (2) ◽  
pp. 856-860 ◽  
Author(s):  
Swathi N ◽  
Sandhiya D ◽  
Rajeshkumar S ◽  
Lakshmi T

Green synthesis of titanium oxide nanoparticles has more advantages when compared with the chemical method. This work reports a green synthesis of titanium dioxide nanoparticles (TiO2NPs) by the herbal plant extracts of Cassia fistula. Then the green synthesized NPs were characterized by UV-Vis spectroscopy, X-ray Diffraction (XRD), Fourier transforms infra-Red spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA). The result of the SEM image shows that the nanoparticles are spherical in shape. The antibacterial activity was done on Escherichia coli and Staphylococcus aureus.


2020 ◽  
Vol 17 (2(SI)) ◽  
pp. 0663
Author(s):  
Nada Abbas et al.

In this study, Titanium Dioxide Nanoparticles were synthesized by an easy and eco-friendly technique (green synthesis) using green tea leaves (Camillia sinensis), Nanoparticles were analyzed using structural and optical analysis, the X-ray pattern showed that Titanium Dioxide NPs had a tetragonal structure with (Face Centered Tetragonal) FCT crystal structure, the UV-visible recorded an absorbance peak near 350 nm and calculated energy band gap was 3.5 eV, all measurements were proved the purity and Nano size of prepared Nanoparticles. Biochemical parameters evaluation also mentioned in this research, these analyzes showed that Titanium Dioxide nanoparticles in particular dose (50 mg/kg) have the ability to reduce blood glucose levels, improve liver functions and recover lipid levels in the animals body, and lastly, histological pancreatic parts were submitted to observe changes that occurred after dexamethasone and nanoparticles were injected.


Sign in / Sign up

Export Citation Format

Share Document