scholarly journals Interactive effect of shade and PEG-induced osmotic stress on physiological responses of soybean seedlings

2021 ◽  
Vol 20 (9) ◽  
pp. 2382-2394
Author(s):  
Ahsan ASGHAR Muhammad ◽  
Heng-ke JIANG ◽  
Zhao-wei SHUI ◽  
Xi-yu CAO ◽  
Xi-yu HUANG ◽  
...  
2017 ◽  
Vol 27 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Lidiia Samarina ◽  
Valentina Malyarovskaya ◽  
Yulija Abilfazova ◽  
Natalia Platonova ◽  
Kristina Klemeshova ◽  
...  

Structural and physiological responses of chrysanthemum to repeated osmotic stress were studied. Plants were cultured for 2 weeks (for each stress1 and stress 2) on half MS supplemented with mannitol 100 mM (Treatment I) and 200 mM (Treatment II). First stress inhibited growth parameters stronger than second stress in treatment I. In treatment II both stress events strongly inhibited growth parameters of micro‐shoots. Proline content exceeded control 6 ‐ 8 times after 1st stress, and 2 ‐ 5 times after the 2nd stress in treatments I and II, respectively. Soluble protein was accumulated in leaves during both stress exposures, and 2 ‐ 2.5 times exceeded control after the 2nd stress. Relative water content in both treatments increased after the 2nd stress exposure. In treatment II chlorophyll а and carotenoids contents were 8.78 and 4.62 mg/g comparing to control (4.21 and 2.25 mg/g, respectively) after the 1st stress. But after the 2nd stress there was no difference with control.Plant Tissue Cult. & Biotech. 27(2): 161-169, 2017 (December)


2021 ◽  
Vol 22 (5) ◽  
pp. 2658
Author(s):  
Beatriz A. Rodas-Junco ◽  
Graciela E. Racagni-Di-Palma ◽  
Michel Canul-Chan ◽  
Javier Usorach ◽  
S. M. Teresa Hernández-Sotomayor

Plants are subject to different types of stress, which consequently affect their growth and development. They have developed mechanisms for recognizing and processing an extracellular signal. Second messengers are transient molecules that modulate the physiological responses in plant cells under stress conditions. In this sense, it has been shown in various plant models that membrane lipids are substrates for the generation of second lipid messengers such as phosphoinositide, phosphatidic acid, sphingolipids, and lysophospholipids. In recent years, research on lipid second messengers has been moving toward using genetic and molecular approaches to reveal the molecular setting in which these molecules act in response to osmotic stress. In this sense, these studies have established that second messengers can transiently recruit target proteins to the membrane and, therefore, affect protein conformation, activity, and gene expression. This review summarizes recent advances in responses related to the link between lipid second messengers and osmotic stress in plant cells.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sabeh Yousfi ◽  
Hayet Houmani ◽  
Fethia Zribi ◽  
Chedly Abdelly ◽  
Mohamed Gharsalli

Literature on the separate effects of salinity and inadequate Fe supply on plant growth and nutrient uptake, concentration, and distribution is abundant but little is known about the interactive effects of these two abiotic constraints. Here, we investigated the interactive effect of iron availability and salinity on physiological responses of cultivated and wild barley (Hordeum vulgare and H. maritimum resp.). Seedlings of both species were grown for 9 days, under complete nutrient solution with or without iron supply. Then, NaCl treatment was applied at different concentrations (0, 100, 200, and 300 mM) for 60 hours. After salt exposure, shoot water content of H. vulgare was significantly reduced as compared to H. maritimum. Furthermore, Na+ accumulation in shoots increased parallel to increasing NaCl concentration in the medium. However, the increase was significantly higher in H. vulgare than in H. maritimum. These responses were associated with lower Fe absorption efficiency photosynthetic parameters in both species. The reduction was significantly higher in cultivated than in wild barley. Moreover, phytosiderophore exudation was enhanced in both species by direct (iron free medium) or indirect iron limitation (salt-induced iron limitation). Such a stimulation of phytosiderophore release was genotype and salt level dependant.


2022 ◽  
pp. 1-6
Author(s):  
Morio Iijima ◽  
Kaito Yamashita ◽  
Yoshihiro Hirooka ◽  
Yoshikatsu Ueda ◽  
Koji Yamane ◽  
...  

1990 ◽  
Vol 47 (12) ◽  
pp. 2358-2363 ◽  
Author(s):  
M. R. Meador ◽  
W. E. Kelso

Plasma osmotic and electrolyte concentrations as well as branchial Na+/K+ and Mg++ ATPase activities were determined in the field for largemouth bass, Micropterus salmoides, from a brackish marsh and freshwater lake in southcentral Louisiana. Laboratory experiments were conducted to evaluate plasma chemistry and gill ATPase activities of largemouth bass from both locations exposed to 0, 4, 8, and 12‰ salinity. No significant differences in physiological responses were detected between marsh and freshwater largemouth bass exposed to 0, 4, or 12‰. Exposure to 12‰ salinity resulted in osmotic stress in largemouth bass from both locations. At 8‰, marsh largemouth bass had significantly higher plasma solutes and lower gill ATPase activities than freshwater fish. Different physiological responses by marsh and freshwater largemouth bass during exposure to 8‰ salinity indicated that marsh largemouth bass have adapted to environments of variable salinity by reducing active ion transport and tolerating elevated plasma son levels.


2021 ◽  
Vol 27 (1) ◽  
pp. 135-150
Author(s):  
Emna Ghouili ◽  
Khaled Sassi ◽  
Moez Jebara ◽  
Yassine Hidri ◽  
Rim Nefissi Ouertani ◽  
...  

2019 ◽  
Vol 145 ◽  
pp. 95-106 ◽  
Author(s):  
Britt Merlaen ◽  
Ellen De Keyser ◽  
Lei Ding ◽  
Olivier Leroux ◽  
François Chaumont ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document