Primary Production, Cycling of Nutrients, Surface Layer and Plankton

2010 ◽  
Vol 7 (4) ◽  
pp. 1405-1437
Author(s):  
L. Zhao ◽  
X. Guo

Abstract. A three dimensional coupled biophysical model was used to examine the supply of oceanic nutrients to the shelf of the East China Sea (ECS) and its role in primary production over the shelf. The model consisted of two modules: the hydrodynamic module was based on a nested model with a horizontal resolution of 1/18 degree, whereas the biological module was a low trophic level ecosystem model including two types of phytoplankton, three elements of nutrients, and biogenic organic material. Model results suggested that seasonal variation in chlorophyll-a had a strong regional dependence over the shelf of the ECS. The area with high chlorophyll-a appears firstly at the outer shelf in winter, and gradually migrates toward the inner shelf (offshore region of Changjiang estuary) from spring to summer. Vertically, chlorophyll-a was generally homogenous from the coastal zone to the inner shelf. In the middle and outer shelves, high chlorophyll-a appeared in the surface in spring but moved to the subsurface from summer to early autumn. The annual averaged onshore flux across the shelf break was estimated to be 1.53 Sv for volume, 9.4 kmol s−1 for DIN, 0.7 kmol s−1 for DIP, and 18.2 kmol s−1 for silicate, which are supplied mainly from the northeast of Taiwan and southwest of Kyushu. From calculations that artificially increased the concentration of nutrients in the Kuroshio water, the additional oceanic nutrients were distributed in the bottom layer from the shelf break to the region offshore of Changjiang estuary from spring to summer, and appeared in the surface layer from autumn to winter. The contribution of oceanic nutrients to primary production over the shelf was found not only in the surface layer (mainly at the outer shelf and shelf break in winter and in the region offshore of Changjiang estuary in summer) but also in the subsurface layer over the shelf from spring to autumn.


Ocean Science ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 27-43 ◽  
Author(s):  
L. Zhao ◽  
X. Guo

Abstract. A three dimensional coupled biophysical model was used to examine the supply of oceanic nutrients to the shelf of the East China Sea (ECS) and its role in primary production over the shelf. The model consisted of two parts: the hydrodynamic module was based on a nested model with a horizontal resolution of 1/18 degree, whereas the biological module was a lower trophic level ecosystem model including two types of phytoplankton, three elements of nutrients, and biogenic organic material. The model results suggested that seasonal variations occurred in the distribution of nutrients and chlorophyll a over the shelf of the ECS. After comparison with available observed nutrients and chlorophyll a data, the model results were used to calculate volume and nutrients fluxes across the shelf break. The annual mean total fluxes were 1.53 Sv for volume, 9.4 kmol s−1 for DIN, 0.7 kmol s−1 for DIP, and 18.2 kmol s−1 for silicate. Two areas, northeast of Taiwan and southwest of Kyushu, were found to be major source regions of oceanic nutrients to the shelf. Although the onshore fluxes of nutrients and volume both had apparent seasonal variations, the seasonal variation of the onshore nutrient flux did not exactly follow that of the onshore volume flux. Additional calculations in which the concentration of nutrients in Kuroshio water was artificially increased suggested that the oceanic nutrients were distributed in the bottom layer from the shelf break to the region offshore of the Changjiang estuary from spring to summer and appeared in the surface layer from autumn to winter. The calculations also implied that the supply of oceanic nutrients to the shelf can change the consumption of pre-existing nutrients from rivers. The response of primary production over the shelf to the oceanic nutrients was confirmed not only in the surface layer (mainly at the outer shelf and shelf break in winter and in the region offshore of the Changjiang estuary in summer) but also in the subsurface layer over the shelf from spring to autumn.


2013 ◽  
Vol 10 (10) ◽  
pp. 15641-15710
Author(s):  
A. Forest ◽  
P. Coupel ◽  
B. Else ◽  
S. Nahavandian ◽  
B. Lansard ◽  
...  

Abstract. The accelerated decline in Arctic sea ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air–sea CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air–sea CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air–sea CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h−1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of −2.0 ± 3.3 mmol C m−2d−1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m−2d−1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m−2d−1). Although generally <100 mg C m−2d−1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the whole area and as much as ~72.0% seaward of the shelf break. In the upper 100 m, bacteria dominated (54%) total community respiration (~250 mg C m−2d−1), whereas protozoans, metazoans, and benthos, contributed to 24%, 10%, and 12%, respectively. The range of production-to-biomass ratios of bacteria was wide (1–27% d−1), while we estimated a narrower range for protozoans (6–11% d−1) and metazoans (1–3 % d−1). Over the shelf, benthic biomass was twice higher (~5.9 g C m−2) than the biomass of pelagic heterotrophs (~2.4 g C m−2), in accord with high vertical carbon fluxes on the shelf (956 ± 129 mg C m−2d−1). Threshold PP (PP at which NCP becomes positive) in the surface layer oscillated from 20–152 mg C m−2d−1, with a pattern from low-to-high values as the distance from the Mackenzie River decreased. We conclude that: (1) climate change is exacerbating the already extreme biological gradient across the Arctic shelf-basin system; (2) the Mackenzie Shelf acts as a weak sink for atmospheric CO2, implying that PP exceeds the respiration of terrigenous and marine organic matter in the surface layer; and (3) shelf break upwelling can transfer CO2 to the atmosphere, but massive outgassing can be attenuated if nutrients brought also by upwelling support diatom production. Our study underscores that cross-shelf exchange of waters, nutrients and particles is a key mechanism that needs to be properly monitored as the Arctic transits to a new state.


2014 ◽  
Vol 11 (10) ◽  
pp. 2827-2856 ◽  
Author(s):  
A. Forest ◽  
P. Coupel ◽  
B. Else ◽  
S. Nahavandian ◽  
B. Lansard ◽  
...  

Abstract. The accelerated decline in Arctic sea ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates air–sea CO2 fluxes. Using data collected as part of the ArcticNet–Malina 2009 expedition in the southeastern Beaufort Sea (Arctic Ocean), we synthesize information on sea ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as air–sea CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against air–sea CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h−1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of −2.0 ± 3.3 mmol C m−2 d−1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m−2 d−1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m−2 d−1). Daily PP rates were generally < 100 mg C m−2 d−1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the organic carbon delivery by river inputs (~ 241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the whole area and as much as ~ 72.0% seaward of the shelf break. In the upper 100 m, bacteria dominated (54%) total community respiration (~ 250 mg C m−2 d−1), whereas protozoans, metazoans, and benthos, contributed to 24, 10, and 12%, respectively. The range of production-to-biomass ratios of bacteria was wide (1–27% d−1), while we estimated a narrower range for protozoans (6–11% d−1) and metazoans (1–3% d−1). Over the shelf, benthic biomass was twofold (~ 5.9 g C m−2) the biomass of pelagic heterotrophs (~ 2.4 g C m−2), in accord with high vertical carbon fluxes on the shelf (956 ± 129 mg C m−2 d−1). Threshold PP (PP at which NCP becomes positive) in the surface layer oscillated from 20 to 152 mg C m−2 d−1, with a pattern from low-to-high values as the distance from the Mackenzie River decreased. We conclude that (1) climate change is exacerbating the already extreme biological gradient across the Beaufort shelf–basin system; (2) the Mackenzie Shelf acts as a weak sink for atmospheric CO2, suggesting that PP might exceed the respiration of terrigenous and marine organic matter in the surface layer; and (3) shelf break upwelling can transfer CO2 to the atmosphere, but CO2 outgassing can be attenuated if nutrients brought also by upwelling support diatom production. Our study underscores that cross-shelf exchange of waters, nutrients and particles is a key mechanism that needs to be properly monitored as the Arctic transits to a new state.


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 431-445 ◽  
Author(s):  
A. Cherkasheva ◽  
E.-M. Nöthig ◽  
E. Bauerfeind ◽  
C. Melsheimer ◽  
A. Bracher

Abstract. Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviated significantly from the model in the other months (July–September), when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m−3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates) when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.


2012 ◽  
Vol 9 (6) ◽  
pp. 3567-3591
Author(s):  
A. Cherkasheva ◽  
A. Bracher ◽  
E.-M. Nöthig ◽  
E. Bauerfeind ◽  
C. Melsheimer

Abstract. Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color observations are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll vertical profile, which is the basis for most primary production models. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m−3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll profiles maxima moved from lower depths in spring towards the surface in late summer. Profiles with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviates significantly from that in other months (July–September) where the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersect roughly at one common depth within each category. Finally, by applying a Gaussian fitting with 0.1 mg C m−3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations have been determined. These will be used as the input to the satellite-based primary production models estimating primary production in Arctic regions.


2020 ◽  
Author(s):  
Tobias Reiner Vonnahme ◽  
Emma Persson ◽  
Ulrike Dietrich ◽  
Eva Hejdukova ◽  
Christine Dybwad ◽  
...  

Abstract. Subglacial upwelling of nutrient rich bottom water is known to support high summer primary production in Arctic fjord systems. However, during the winter/spring season, the importance of subglacial upwelling has not been considered yet. We hypothesized that subglacial upwelling under sea ice is present in winter/spring and sufficient to increase phytoplankton primary productivity. We evaluated the effects of the subglacial upwelling on primary production in a seasonally fast ice covered Svalbard fjord (Billefjorden) influenced by a tidewater outlet glacier in April/May 2019. We found clear evidence for subglacial upwelling. Although the estimated entrainment factor (1.6) and total fluxes were lower than in summer studies, we observed substantial impact on the fjord ecosystem and primary production. The subglacial meltwater leads to a salinity stratified surface layer and sea ice formation with low bulk salinity and permeability. The combination of the stratified surface layer, a two-fold higher under-ice irradiance, and higher N and Si concentrations at the glacier front supported two orders of magnitude higher primary production (42.6 mg C m−2 d−1) compared to a marine reference site at the fast ice edge. The nutrient supply increased primary production by approximately 30 %. The brackish water sea ice at the glacier front with its low bulk salinity contained a reduced brine volume, limiting the inhabitable place and nutrient exchange with the underlying seawater compared to full marine sea ice. Microbial and algal communities were substantially different in subglacial influenced water and sea ice compared to the marine reference site, sharing taxa with the subglacial outflow water. We suggest that with climate change, the retreat of tidewater glaciers could lead to decreased under-ice phytoplankton primary production, while sea ice algae production and biomass may become increasingly important.


Sign in / Sign up

Export Citation Format

Share Document