bulk salinity
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 15 (4) ◽  
pp. 2083-2107
Author(s):  
Tobias Reiner Vonnahme ◽  
Emma Persson ◽  
Ulrike Dietrich ◽  
Eva Hejdukova ◽  
Christine Dybwad ◽  
...  

Abstract. Subglacial upwelling of nutrient-rich bottom water is known to sustain elevated summer primary production in tidewater-glacier-influenced fjord systems. However, the importance of subglacial upwelling during the early spring season has not been considered yet. We hypothesized that subglacial discharge under sea ice is present in early spring and that its flux is sufficient to increase phytoplankton primary productivity. We evaluated the effects of the submarine discharge on primary production in a seasonally fast-ice covered Svalbard fjord (Billefjorden) influenced by a tidewater outlet glacier in April and May 2019. We found clear evidence for subglacial discharge and upwelling. Although the estimated bottom-water entrainment factor (1.6) and total fluxes were lower than in summer studies, we still observed substantial impact on the fjord ecosystem and primary production at this time of the year. The subglacial discharge leads to a salinity-stratified surface water layer and sea ice formation with low bulk salinity and permeability. The combination of the stratified surface layer, a 2-fold higher under-ice irradiance due to thinner snow cover, and higher N and Si concentrations at the glacier front supported phytoplankton primary production 2 orders of magnitude higher (42.6 mg C m−2 d−1) compared to a marine reference site at the fast-ice edge. Reciprocal transplant experiments showed that nutrient supply increased phytoplankton primary production by approximately 30 %. The brackish-water sea ice at the glacier front with its low bulk salinity contained a reduced brine volume, limiting the inhabitable brine channel space and nutrient exchange with the underlying seawater compared to full marine sea ice. Microbial and algal communities were substantially different in subglacial-influenced water and sea ice compared to the marine reference site, sharing taxa with the subglacial outflow water. We suggest that with climate change, the retreat of tidewater glaciers in early spring could lead to decreased under-ice phytoplankton primary production. In contrast, sea ice algae production and biomass may become increasingly important, unless sea ice disappears first, in which case spring phytoplankton primary production may increase.


2021 ◽  
Vol 14 (3) ◽  
pp. 1833-1849
Author(s):  
Max Thomas ◽  
James France ◽  
Odile Crabeck ◽  
Benjamin Hall ◽  
Verena Hof ◽  
...  

Abstract. Sea ice is difficult, expensive, and potentially dangerous to observe in nature. The remoteness of the Arctic Ocean and Southern Ocean complicates sampling logistics, while the heterogeneous nature of sea ice and rapidly changing environmental conditions present challenges for conducting process studies. Here, we describe the Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC), a laboratory facility designed to reproduce polar processes and overcome some of these challenges. The RvG-ASIC is an open-topped 3.5 m3 glass tank housed in a cold room (temperature range: −55 to +30 ∘C). The RvG-ASIC is equipped with a wide suite of instruments for ocean, sea ice, and atmospheric measurements, as well as visible and UV lighting. The infrastructure, available instruments, and typical experimental protocols are described. To characterise some of the technical capabilities of our facility, we have quantified the timescale over which our chamber exchanges gas with the outside, τl=(0.66±0.07) d, and the mixing rate of our experimental ocean, τm=(4.2±0.1) min. Characterising our light field, we show that the light intensity across the tank varies by less than 10 % near the centre of the tank but drops to as low as 60 % of the maximum intensity in one corner. The temperature sensitivity of our light sources over the 400 to 700 nm range (PAR) is (0.028±0.003) W m−2 ∘C−1, with a maximum irradiance of 26.4 W m−2 at 0 ∘C; over the 320 to 380 nm range, it is (0.16±0.1) W m−2 ∘C−1, with a maximum irradiance of 5.6 W m−2 at 0 ∘C. We also present results characterising our experimental sea ice. The extinction coefficient for PAR varies from 3.7 to 6.1 m−1 when calculated from irradiance measurements exterior to the sea ice and from 4.4 to 6.2 m−1 when calculated from irradiance measurements within the sea ice. The bulk salinity of our experimental sea ice is measured using three techniques, modelled using a halo-dynamic one-dimensional (1D) gravity drainage model, and calculated from a salt and mass budget. The growth rate of our sea ice is between 2 and 4 cm d−1 for air temperatures of (-9.2±0.9) ∘C and (-26.6±0.9) ∘C. The PAR extinction coefficients, vertically integrated bulk salinities, and growth rates all lie within the range of previously reported comparable values for first-year sea ice. The vertically integrated bulk salinity and growth rates can be reproduced well by a 1D model. Taken together, the similarities between our laboratory sea ice and observations in nature, as well as our ability to reproduce our results with a model, give us confidence that sea ice grown in the RvG-ASIC is a good representation of natural sea ice.


2021 ◽  
Author(s):  
Marc Oggier ◽  
Hajo Eicken ◽  
Robert Rember ◽  
Allison Fong ◽  
Dmitry V. Divine ◽  
...  

<p>Sea ice affects the exchange of energy and matter between the atmosphere and the ocean from local to hemispheric scales. Salt fluxes across the ice-ocean interface that drive thermohaline mixing beneath growing sea ice are important elements of upper ocean nutrient and carbon exchange. Sea-ice melt releases freshwater into the upper ocean and results in formation of melt ponds that affect gas and energy transfer across the atmosphere-ice interface. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) provided an opportunity to follow sea-ice evolution and exchange processes over a full seasonal cycle in a rapidly changing ice cover. To this end, approximately 25 sea-ice cores were collected at 2 distinct sites, representing first-year and multi-year ice, to monitor physical, biological and geochemical processes relevant to atmosphere-ice-ocean exchange processes. Here we compare the growth and decay of first-year ice in the Central Arctic during the winter 2019-2020 to that of landfast first-year ice at Utqiaġvik, Alaska, from 1998 to 2016. Ice stratigraphy was similar at both sites with about 15 cm of granular ice on top of columnar ice, with a comparable growth history with a similar maximum ice thickness of 1.6-1.7 m. We aggregated the sea-ice bulk salinity and temperature profiles using a degree-day approach, and examined brine and freshwater fluxes at lower and upper interfaces of the ice, respectively. Preliminary results show lower sea-ice bulk salinity during the growth season and greater desalination at the ice surface during the melt season at the MOSAiC floe in comparison to Utqiaġvik.</p>


2021 ◽  
Vol 9 (1) ◽  
pp. 60
Author(s):  
Lars Chresten Lund-Hansen ◽  
Clara Marie Petersen ◽  
Dorte Haubjerg Søgaard ◽  
Brian Keith Sorrell

Small-scale variation in the physical and biological properties of sea ice was examined by collecting nine sea ice cores within 1 m2 in a land-fast first-year ice in southwest Greenland in late winter. Cores were sectioned in four segments and sea ice physical, biological, and photobiological parameters were measured. The main purpose was to explore the decimeter-scale horizontal and vertical variations in common sea ice parameters. ANOVA analyses revealed significant within-core variations for bulk salinity, brine salinity, brine volume, gas volume, chlorophyll a (Chl a), and the maximum light-limited photosynthetic efficiency (α). Only temperature and bulk salinity variations were significant between cores, and no significant variations were found within or between cores for other photobiological parameters. Power analyses were applied to determine the number of replicates needed to achieve a significance at p < 0.05 with sufficient power, and showed a minimum of four and preferably five replicate cores to detect the observed variability in this first-year ice. It is emphasized that these results only apply to this type of first-year ice in late winter/early spring, and that different variations may apply to other types of ice.


2020 ◽  
Author(s):  
Tobias Reiner Vonnahme ◽  
Emma Persson ◽  
Ulrike Dietrich ◽  
Eva Hejdukova ◽  
Christine Dybwad ◽  
...  

Abstract. Subglacial upwelling of nutrient rich bottom water is known to support high summer primary production in Arctic fjord systems. However, during the winter/spring season, the importance of subglacial upwelling has not been considered yet. We hypothesized that subglacial upwelling under sea ice is present in winter/spring and sufficient to increase phytoplankton primary productivity. We evaluated the effects of the subglacial upwelling on primary production in a seasonally fast ice covered Svalbard fjord (Billefjorden) influenced by a tidewater outlet glacier in April/May 2019. We found clear evidence for subglacial upwelling. Although the estimated entrainment factor (1.6) and total fluxes were lower than in summer studies, we observed substantial impact on the fjord ecosystem and primary production. The subglacial meltwater leads to a salinity stratified surface layer and sea ice formation with low bulk salinity and permeability. The combination of the stratified surface layer, a two-fold higher under-ice irradiance, and higher N and Si concentrations at the glacier front supported two orders of magnitude higher primary production (42.6 mg C m−2 d−1) compared to a marine reference site at the fast ice edge. The nutrient supply increased primary production by approximately 30 %. The brackish water sea ice at the glacier front with its low bulk salinity contained a reduced brine volume, limiting the inhabitable place and nutrient exchange with the underlying seawater compared to full marine sea ice. Microbial and algal communities were substantially different in subglacial influenced water and sea ice compared to the marine reference site, sharing taxa with the subglacial outflow water. We suggest that with climate change, the retreat of tidewater glaciers could lead to decreased under-ice phytoplankton primary production, while sea ice algae production and biomass may become increasingly important.


2020 ◽  
Author(s):  
Max Thomas ◽  
James France ◽  
Odile Crabeck ◽  
Benjamin Hall ◽  
Verena Hof ◽  
...  

Abstract. Sea ice is difficult, expensive, and potentially dangerous to observe in nature. The remoteness of the Arctic and Southern Oceans complicates sampling logistics, while the heterogeneous nature of sea ice and rapidly changing environmental conditions present challenges for conducting process studies. Here, we describe the Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC), a laboratory facility designed to reproduce polar processes and overcome some of these challenges. The RvG-ASIC is an open-topped 3.5 m3 glass tank housed in a coldroom (temperature range: −55 to +30 °C). The RvG-ASIC is equipped with a wide suite of instruments for ocean, sea ice, and atmospheric measurements, as well as visible and UV lighting. The infrastructure, available instruments, and typical experimental protocols are described. To characterise some of the technical capabilities of our facility, we have quantified the timescale over which our chamber exchanges gas with the outside, τl = (0.66 ± 0.07) days, and the mixing rate of our experimental ocean, τm = (4.2 ± 0.1) minutes. Characterising our light field, we show that the light intensity across the tank varies by less than 10 % near the centre of the tank but drops to as low as 60 % of the maximum intensity in one corner. The temperature sensitivity of our light sources over the 400 nm to 700 nm range (PAR) is (0.028 ± 0.003) W m−2 °C−1, with a maximum irradiance of 26.4 W m−2 at 0 °C; over the 320 nm to 380 nm range, it is (0.16 ± 0.1) W m−2 °C−1, with a maximum irradiance of 5.6 W m−2 at 0 °C. We also present results characterising our experimental sea ice. The extinction coefficient for PAR varies from 3.7 m−1 to 6.1 m−1 when calculated from irradiance measurements exterior to the sea ice and from 4.5 m−1 to 6.2 m−1 when calculated from irradiance measurements within the sea ice. The bulk salinity of our experimental sea ice is measured using three techniques, modelled using a halo-dynamic one-dimensional (1D) gravity drainage model, and calculated from a salt and mass budget. The growth rate of our sea ice is between 2 cm d−1 and 4 cm d−1 for air temperatures of (−9.2 ± 0.9) °C and (−26.6 ± 0.9) °C. The PAR extinction coefficients, vertically integrated bulk salinities, and growth rates all lie within the range of previously reported comparable values for first-year sea ice. The vertically integrated bulk salinity and growth rates can be reproduced well by a 1D model. Taken together, the similarities between our laboratory sea ice and observations in nature, and our ability to reproduce our results with a model, give us confidence that sea ice grown in the RvG-ASIC is a good representation of natural sea ice.


2019 ◽  
Vol 104 (12) ◽  
pp. 1788-1799 ◽  
Author(s):  
Kaléo M.F. Almeida ◽  
David M. Jenkins

Abstract Scapolites are pervasive rock-forming aluminosilicates that are found in metamorphic, igneous, and hydrothermal environments; nonetheless, the stability field of Cl-rich scapolite is not well constrained. This experimental study investigated two reactions involving Cl-rich scapolite. First, the anhydrous reaction 1 of plagioclase + halite + calcite to form scapolite [modeled as: 3 plagioclase (Ab80An20) + 0.8 NaCl + 0.2 CaCO3 = scapolite (Ma80Me20)] was investigated to determine the effect of the Ca-rich meionite (Me = Ca4Al6Si6O24CO3) component on the Na end-member marialite (Ma = Na4Al3Si9O24Cl). Second, the effect of water on this reaction was investigated using the hydrothermally equivalent reaction 2, H2O + scapolite (Ma80Me20) = 3 plagioclase (Ab80An20) + CaCO3 + liquid, where the liquid is assumed to be a saline-rich hydrous-silicate melt. Experiments were conducted with synthetic phases over the range of 500–1030 °C and 0.4–2.0 GPa. For reaction 1, intermediate composition scapolite shows a wide thermal stability and is stable relative to plagioclase + halite + calcite at temperatures above 750 °C at 0.4 GPa and 760 °C at 2.0 GPa. For reaction 2, intermediate scapolite appears to be quite tolerant of water; it forms at a minimum bulk salinity [XNaCl = molar ratio of NaCl/(NaCl+H2O)] of the brine of approximately 0.2 XNaCl at 830 and 680 °C at pressures of 2.0 and 1.5 GPa, respectively. Based on the study done by Almeida and Jenkins (2017), pure marialite is very intolerant of water when compared to intermediate composition scapolite. Compositional changes in the scapolite and plagioclase were characterized by X-ray diffraction and electron microprobe analysis and found to shift from the nominal bulk compositions to the observed compositions of Ma85Me15 for scapolite and to Ab91An09 for plagioclase. These results were used to model the phase equilibria along the marialitemeionite join in temperature-composition space. This study demonstrates that a small change in the scapolite composition from end-member marialite to Ma85Me15 expands the stability field of marialite significantly, presumably due to the high entropy of mixing in scapolite, as well as increases its tolerance to water. This supports the much more common presence of intermediate scapolites in hydrothermal settings than either end-member meionite or marialite as is widely reported in the literature.


Ocean Science ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Algot K. Peterson

Abstract. In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the “new Arctic”.


2017 ◽  
Author(s):  
Algot K. Peterson

Abstract. In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anti-correlated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat- and salt fluxes during the plumes account for 6 % and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agree with accumulated salt fluxes to within factor of two. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.


2015 ◽  
Vol 9 (1) ◽  
pp. 305-329 ◽  
Author(s):  
P. J. Griewank ◽  
D. Notz

Abstract. We use a 1-D model to study how salinity evolves in Arctic sea ice. To do so, we first explore how sea-ice surface melt and flooding can be incorporated into the 1-D thermodynamic Semi-Adaptive Multi-phase Sea-Ice Model (SAMSIM) presented by Griewank and Notz (2013). We introduce flooding and a flushing parametrization which treats sea ice as a hydraulic network of horizontal and vertical fluxes. Forcing SAMSIM with 36 years of ERA-interim atmospheric reanalysis data, we obtain a modelled Arctic sea-ice salinity that agrees well with ice-core measurements. The simulations thus allow us to identify the main drivers of the observed mean salinity profile in Arctic sea ice. Our results show a 1.5–4 g kg−1 decrease of bulk salinity via gravity drainage after ice growth has ceased and before flushing sets in, which hinders approximating bulk salinity from ice thickness beyond the first growth season. In our simulations, salinity interannual variability of first-year ice is mostly restricted to the top 20 cm. We find that ice thickness, thermal resistivity, freshwater column, and stored energy change by less than 5% on average when the full salinity parametrization is replaced with a prescribed salinity profile.


Sign in / Sign up

Export Citation Format

Share Document