Chromatin Condensation: Chromomycin A3 (CMA3) Stain

Author(s):  
Sara Marchiani ◽  
Lara Tamburrino ◽  
Francesca Benini ◽  
Sandra Pellegrini ◽  
Elisabetta Baldi
2023 ◽  
Vol 83 ◽  
Author(s):  
P. A. A. Bacelar ◽  
L. L. Feitoza ◽  
S. E. S. Valente ◽  
R. L. F. Gomes ◽  
L. V. Martins ◽  
...  

Abstract Allium sativum L. is an herb of the Alliaceae family with a specific taste and aroma and medicinal and nutraceutical properties that are widely marketed in several countries. Brazil is one of the largest importers of garlic in the world, despite of its production is restricted and limited to internal consumption. Thus, explore the genetic diversity of commercial garlic conserved at germplasm banks is essential to generate additional genetic information about its economically important crop. A suitable tool for this purpose is the cytogenetic characterisation of these accessions. This study aimed to characterise the cytogenetic diversity among seven accessions of garlic from a Germplasm Bank in Brazil. The karyotypes were obtained by conventional staining and with chromomycin A3 (CMA) and 4,6-diamidino-2-phenylindole (DAPI) fluorochromes. All accessions analysed showed chromosome number 2n = 16, karyotype formula 6M+2SM, symmetrical karyotypes, reticulate interphase nuclei, and chromosomes with uniform chromatin condensation from prophase to metaphase. The fluorochromes staining showed differences in the amount and distribution of heterochromatin along the chromosomes and between accessions studied. Based on the distribution pattern of these small polymorphisms, it was possible to separate the seven accessions into three groups. It was also possible to differentiate some of the accessions individually. One of the results obtained showed a heteromorphic distension of the nucleolar organiser region observed on the chromosome pairs 6 or 7 with peculiar characteristics. It was suggested for example, that the heteromorphic block of heterochromatin (CMA+++/DAPI-) on chromosome 6 of the “Branco Mineiro Piauí” accession can be used as a marker to identify this genotype or may be associated with some character of economic interest.


Author(s):  
M. Y. Jahmani ◽  
M. E. Hammadeh ◽  
M. A. Al Smadi ◽  
Marko K. Baller

AbstractChromatin condensation is one of the main factors essential for sperm function. Evaluation of chromatin condensation by current methods render the assessed sperm unsuitable for assisted reproduction. We examined the Raman spectra of normal morphology sperm to determine whether a non-invasive confocal Raman spectroscopy can detect spectral differences between groups having different levels of chromatin condensation. Semen samples from 85 donors who underwent ICSI were obtained. Chromomycin A3, aniline blue and acridine orange staining were performed to evaluate the protamine deficiency, histone retention and DNA fragmentation respectively. Raman spectra were obtained from 50 normal morphology sperm for each donor. Spectral analysis was performed using home written programs in LabVIEW software and samples were grouped based on chromomycin A3 staining. Raman peaks intensities at 670 cm-1, 731 cm-1, 785 cm-1, 858 cm-1, 1062 cm-1, 1098 cm-1, 1185 cm-1, 1372 cm-1, 1424 cm-1, 1450 cm-1, 1532 cm-1, 1618 cm-1 and 1673 cm-1 were significantly correlated with at least one of the sperm staining methods. The median intensity of the Raman peaks at 670 cm-1, 731 cm-1, 785 cm-1, 1062 cm-1, 1098 cm-1, 1185 cm-1, 1372 cm-1, 1424 cm-1, 1450 cm-1, 1532 cm-1, 1618 cm-1 and 1673 cm-1 show a significant difference between the CMA3≤41 and CMA3>41groups. The Raman spectroscopic measurements represent a promising diagnostic tool that has the ability to label-free detect sperm with chromatin abnormalities, such as improper chromatin condensation and DNA fragmentation to a certain degree similar to that of the existing staining techniques at the individual cell level.


Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Author(s):  
Soichiro Arai ◽  
Yuh H. Nakanishi

Although many electron microscopic studies on extracted chromatin have provided considerable information on chromatin condensation induced by divalent cations, there is only a little literature available on the effects of divalent cations on chromatin structure in intact nuclei. In the present study, the effects of Mg2+ on chromatin structure in isolated chicken liver nuclei were examined over a wide concentration range of Mg2+ by scanning electron microscopy.Nuclei were prepared from chicken liver by the method of Chauveau et al. with some modifications. The nuclei were suspended in 25 mM triethanolamine chloride buffer (pH7.4) with 1 mM EDTA or in the buffer with concentrations of MgCl2 varying from 1 to 50 mM. After incubation for 1 min at 0°C, glutaraldehyde was added to 1.8% and the nuclei were fixed for 1 h at 4°C. The fixed nuclei were mixed with 15% gelatin solution warmed at about 40°C, and kept at room temperature until the mixture set. The gelatin containing the nuclei was fixed with 2% glutaraldehyde for 2-4 h, and cut into small blocks. The gelatin blocks were conductive-stained with 2% tannic acid and 2% osmium tetroxide, dehydrated in a graded series of ethanol, and freeze-cracked with a razor blade in liquid nitrogen.


Author(s):  
D. W. Fairbain ◽  
M.D. Standing ◽  
K.L. O'Neill

Apoptosis is a genetically defined response to physiological stimuli that results in cellular suicide. Features common to apoptotic cells include chromatin condensation, oligonucleosomal DNA fragmentation, membrane blebbing, nuclear destruction, and late loss of ability to exclude vital dyes. These characteristics contrast markedly from pathological necrosis, in which membrane integrity loss is demonstrated early, and other features of apoptosis, which allow a non-inflammatory removal of dead and dying cells, are absent. Using heat shock-induced apoptosis as a model for examining stress response in cells, we undertook to categorize a variety of human leukemias and lymphomas with regard to their response to heat shock. We were also interested in determining whether a common temporal order was followed in cells dying by apoptosis. In addition, based on our previous results, we investigated whether increasing heat load resulted in increased apoptosis, with particular interest in relatively resistant cell lines, or whether the mode of death changed from apoptosis to necrosis.


2018 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Julianna Maria Santos ◽  
Fazle Hussain

Background: Reduced levels of magnesium can cause several diseases and increase cancer risk. Motivated by magnesium chloride’s (MgCl2) non-toxicity, physiological importance, and beneficial clinical applications, we studied its action mechanism and possible mechanical, molecular, and physiological effects in prostate cancer with different metastatic potentials.Methods: We examined the effects of MgCl2, after 24 and 48 hours, on apoptosis, cell migration, expression of epithelial mesenchymal transition (EMT) markers, and V-H+-ATPase, myosin II (NMII) and the transcription factor NF Kappa B (NFkB) expressions.Results: MgCl2 induces apoptosis, and significantly decreases migration speed in cancer cells with different metastatic potentials.  MgCl2 reduces the expression of V-H+-ATPase and myosin II that facilitates invasion and metastasis, suppresses the expression of vimentin and increases expression of E-cadherin, suggesting a role of MgCl2 in reversing the EMT. MgCl2 also significantly increases the chromatin condensation and decreases NFkB expression.Conclusions: These results suggest a promising preventive and therapeutic role of MgCl2 for prostate cancer. Further studies should explore extending MgCl2 therapy to in vivo studies and other cancer types.Keywords: Magnesium chloride, prostate cancer, migration speed, V-H+-ATPase, and EMT.


2019 ◽  
Vol 15 (8) ◽  
pp. 883-891
Author(s):  
Syeda Abida Ejaz ◽  
Mariia Miliutina ◽  
Peter Langer ◽  
Aamer Saeed ◽  
Jamshed Iqbal

Background: Previously, we have identified 3,3′–carbonyl–bis(chromones) (1a-h, 5e) and 3–(5–(benzylideneamino)thiozol–3–yl)–2H–chromen–2–ones (7a-j) as potent inhibitors of tissue non-specific alkaline phosphatase (TNAP). The present study was designed to investigate the cytotoxic and pro-apoptotic effect of the said derivatives. Methods: The anti-proliferative effect of the derivatives was investigated in three cancer cell lines i.e., MCF-7, K-562, HeLa and normal BHK21 cells using MTT assay. The pro-apoptotic effect of the most potent derivatives was investigated by using flow cytometry, DAPI and PI staining and DNA binding studies. Results: Among all the screened compounds, 1f, 1d, 1c (from 3,3′–carbonyl–bis(chromones), 7c, 7h and 7i (from 3–(5–(benzylideneamino)thiozol–3–yl)–2H–chromen–2–ones) exhibited remarkable growth inhibitory effects. Compounds 1f and 7c were found to be the most potent cytotoxic derivatives against MCF-7; 1d and 7h inhibited most of the proliferation of K-562 cells, whereas 1c and 7i showed maximum growth inhibition in HeLa cells. The identified compounds exerted lower micromolar potency against the respective cell line with significant selectivity over the normal cells (BHK–21). The identified compounds also induced either G2 or S-phase arrest within the respective cancer cells, chromatin condensation and nuclear fragmentation, as well as maximum interaction with DNA. Conclusions: These results provide evidence that the characteristic chemical features of attached groups are the key factors for their anticancer effects and play a useful role in revealing the mechanisms of action in relation to the known compounds in future research programs.


Biochemistry ◽  
1990 ◽  
Vol 29 (39) ◽  
pp. 9294-9304 ◽  
Author(s):  
Debra L. Banville ◽  
Max A. Keniry ◽  
Richard H. Shafer

Sign in / Sign up

Export Citation Format

Share Document