scholarly journals Prosumer Legislation in Norway: A First Step for Empowering Small Energy Consumers

2018 ◽  
pp. 169-190
Author(s):  
Catherine Banet
Keyword(s):  
Author(s):  
P. E. Batson ◽  
C. H. Chen ◽  
J. Silcox

Electron energy loss experiments combined with microscopy have proven to be a valuable tool for the exploration of the structure of electronic excitations in materials. These types of excitations, however, are difficult to measure because of their small intensity. In a usual situation, the filament of the microscope is run at a very high temperature in order to present as much intensity as possible at the specimen. This results in a degradation of the ultimate energy resolution of the instrument due to thermal broadening of the electron beam.We report here observations and measurements on a new LaB filament in a microscope-velocity spectrometer system. We have found that, in general, we may retain a good energy resolution with intensities comparable to or greater than those available with the very high temperature tungsten filament. We have also explored the energy distribution of this filament.


Author(s):  
Judith M. Brock ◽  
Max T. Otten ◽  
Marc. J.C. de Jong

A Field Emission Gun (FEG) on a TEM/STEM instrument provides a major improvement in performance relative to one equipped with a LaB6 emitter. The improvement is particularly notable for small-probe techniques: EDX and EELS microanalysis, convergent beam diffraction and scanning. The high brightness of the FEG (108 to 109 A/cm2srad), compared with that of LaB6 (∼106), makes it possible to achieve high probe currents (∼1 nA) in probes of about 1 nm, whilst the currents for similar probes with LaB6 are about 100 to 500x lower. Accordingly the small, high-intensity FEG probes make it possible, e.g., to analyse precipitates and monolayer amounts of segregation on grain boundaries in metals or ceramics (Fig. 1); obtain high-quality convergent beam patterns from heavily dislocated materials; reliably detect 1 nm immuno-gold labels in biological specimens; and perform EDX mapping at nm-scale resolution even in difficult specimens like biological tissue.The high brightness and small energy spread of the FEG also bring an advantage in high-resolution imaging by significantly improving both spatial and temporal coherence.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7336
Author(s):  
Mincheol Paik ◽  
Haneul Ko

Frequent location updates of individual Internet of Things (IoT) devices can cause several problems (e.g., signaling overhead in networks and energy depletion of IoT devices) in massive machine type communication (mMTC) systems. To alleviate these problems, we design a distributed group location update algorithm (DGLU) in which geographically proximate IoT devices determine whether to conduct the location update in a distributed manner. To maximize the accuracy of the locations of IoT devices while maintaining a sufficiently small energy outage probability, we formulate a constrained stochastic game model. We then introduce a best response dynamics-based algorithm to obtain a multi-policy constrained Nash equilibrium. From the evaluation results, it is demonstrated that DGLU can achieve an accuracy of location information that is comparable with that of the individual location update scheme, with a sufficiently small energy outage probability.


Author(s):  
Giacomo Belli ◽  
Emanuele Pace ◽  
Emanuele Marchetti

Summary We present infrasound signals generated by four fireball events occurred in Western Alps between 2016 and 2019 and that were recorded by small aperture arrays at source-to receiver distances < 300 km. Signals consist in a series of short-lived infrasonic arrivals that are closely spaced in time. Each arrival is identified as a cluster of detections with constant wave parameters (back-azimuth and apparent velocity), that change however from cluster to cluster. These arrivals are likely generated by multiple infrasonic sources (fragmentations or hypersonic flow) along the entry trajectory. We developed a method, based on 2D ray-tracing and on the independent optically determined time of the event, to locate the source position of the multiple arrivals from a single infrasonic array data and to reconstruct the 3D trajectory of a meteoroid in the Earth's atmosphere. The trajectories derived from infrasound array analysis are in excellent agreement with trajectories reconstructed from eyewitnesses reports for the four fireballs. Results suggest that the trajectory reconstruction is possible for meteoroid entries located up to ∼300 km from the array, with an accuracy that depends on the source-to-receiver distance and on the signal-to-noise level. We also estimate the energy of the four fireballs using three different empirical laws, based both on period and amplitude of recorded infrasonic signals, and discuss their applicability for the energy estimation of small energy fireball events ($\le 1{\rm{kt\,\,TNT\,\,equivalent}}$).


RSC Advances ◽  
2018 ◽  
Vol 8 (52) ◽  
pp. 29662-29669
Author(s):  
Dapeng Yang ◽  
Guang Yang ◽  
Min Jia ◽  
Xiaoyan Song ◽  
Qiaoli Zhang ◽  
...  

Charge transfer from O1 to O2 of 3HFN results in proton H1 transfer from O1 to O2 in S1 state, while small energy barrier facilitates proton H1 transfer from O1 to N1 in S1 state of diCN-HBO, which results in charge transfer from O1 to di-cyano.


1996 ◽  
Vol 449 ◽  
Author(s):  
Alessio Filipetti ◽  
Manuela Menchi ◽  
Andrea Bosin ◽  
Giancarlo Cappellini

ABSTRACTWe present an ab-initio calculation of GaN wurtzite (1010) and zinc-blende (110) surface structures and formation energies. Our method employs ultrasoft pseudopotentials and plane-wave basis. These features enable us to obtain accurate results using small energy cut-off and large supercells. The (110) surface shows a Ga-N surface dimer rotation of ∼ 14°, i.e. about one half that of the ordinary III–V non-nitride compounds, and a 5% contraction of the surface bond-length (more than the double that occurring in GaAs). For the (1010) surface, a layer rotation angle of about 11° and a bond-length contraction of 6% has been found. Zinc-blende GaAs (110) and wurtzite ZnO (1010) surfaces have been studied as well, for the sake of comparison. GaAs results are in good agreement with the experimental findings. For ZnO a large bond contraction and a rotation angle of around 11% result. Thus, our findings place GaN closer in behaviour to the highly ionic II–VI compounds than to the non-nitride III–V semiconductors.


Sign in / Sign up

Export Citation Format

Share Document