scholarly journals Convergence of Evidence Supports a Chuska Mountains Origin for the Plaza Tree of Pueblo Bonito, Chaco Canyon

2020 ◽  
Vol 85 (2) ◽  
pp. 331-346
Author(s):  
Christopher H. Guiterman ◽  
Christopher H. Baisan ◽  
Nathan B. English ◽  
Jay Quade ◽  
Jeffrey S. Dean ◽  
...  

The iconic Plaza Tree of Pueblo Bonito is widely believed to have been a majestic pine standing in the west courtyard of the monumental great house during the peak of the Chaco Phenomenon (AD 850–1140). The ponderosa pine (Pinus ponderosa) log was discovered in 1924, and since then, it has been included in “birth” and “life” narratives of Pueblo Bonito, although these ideas have not been rigorously tested. We evaluate three potential growth origins of the tree (JPB-99): Pueblo Bonito, Chaco Canyon, or a distant mountain range. Based on converging lines of evidence—documentary records, strontium isotopes (87Sr/86Sr), and tree-ring provenance testing—we present a new origin for the Plaza Tree. It did not grow in Pueblo Bonito or even nearby in Chaco Canyon. Rather, JPB-99 originated from the Chuska Mountains, over 50 km west of Chaco Canyon. The tree was likely carried to Pueblo Bonito sometime between AD 1100 and 1130, although why it was left in the west courtyard, what it meant, and how it might have been used remain mysteries. The origin of the Plaza Tree of Pueblo Bonito underscores deep cultural and material ties between the Chaco Canyon great houses and the Chuska landscape.

Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 477 ◽  
Author(s):  
Kaelyn Finley ◽  
Jianwei Zhang

With increasing temperatures and projected changes in moisture availability for the Mediterranean climate of northern California, empirical evidence of the long-term responses of forests to climate are important for managing these ecosystems. We can assess forest treatment strategies to improve climate resilience by examining past responses to climate for both managed and unmanaged plantations. Using an experimental, long-term density and shrub removal study of ponderosa pine (Pinus ponderosa Lawson & C. Lawson) on a poor-quality site with low water-holding capacity and high runoff of the North Coastal mountain range in California, we examined the relationships between radial growth and climate for these trees over a common interval of 1977–2011. Resistance indices, defined here as the ratio between current year radial growth and the performance of the four previous years, were correlated to climatic variables during the same years. We found that all treatments’ radial growth benefited from seasonal spring moisture availability during the current growing year. Conversely, high spring and early summer temperatures had detrimental effects on growth. High-density treatments with manzanita understories were sensitive to summer droughts while lower densities and treatments with full shrub removal were not. The explanatory power of the climate regression models was generally more consistent for the same shrub treatments across the four different densities. The resistance indices for the lower density and complete shrub removal treatment groups were less dependent on previous years’ climatic conditions. We conclude that, for ponderosa pine plantations with significant manzanita encroachment, understory removal and heavy thinning treatments increase subsequent growth for remaining trees and decrease sensitivity to climate.


1984 ◽  
Vol 21 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Julio L. Betancourt ◽  
Owen K. Davis

In western North America, pollen data from highland lakes are often used to reconstruct vegetation on the adjacent lowlands. Plant macrofossils and pollen from packrat middens now provide a means to evaluate such reconstructions. On the basis of pollen diagrams from the Chuska Mountains, H. E. Wright, Jr., A. M. Bent, B. S. Hansen, and L. J. Maher, Jr., ((1973), Geological Society of America Bulletin, 84 , 1155–1180) arrived at conservative estimates for late Pleistocene depression of highland conifers. In their interpretation, a proposed slight depression of 500 m for lower tree line precluded expansion of Pinus ponderosa into elevations now in desertscrub. Instead, it was suggested that pinyon pine and Artemisia occupied the lowland plateaus. Packrat midden records on either side of the Chuskas fail to verify this model. Early Holocene middens from Chaco Canyon, New Mexico, and a terminal Pleistocene midden from Canyon de Chelly, Arizona, show that blue spruce, limber pine, Douglas fir, dwarf juniper, and Rocky Mountain juniper expanded at least down to 1770 m elevation Neither Colorado pinyon nor ponderosa pine was found as macrofossils in the middens. Artemisia pollen percentages are high in the terminal Pleistocene midden, as they are in the Chuska Mountain pollen sequence, suggesting regional dominance by sagebrush steppe. Of 38 taxa identified, only 3 are shared by middens dated 11,900 and 3120 yr B.P. from Canyon de Chelly, indicating a nearly complete turnover in the flora between the late Pleistocene and late Holocene. Although corn was previously thought to have been introduced to the Colorado plateaus after 2200 yr B.P., the midden dated 3120 yr B.P. contains pollen of corn and other indicators of incipient agriculture.


2005 ◽  
Vol 32 (7) ◽  
pp. 1061-1075 ◽  
Author(s):  
Amanda C. Reynolds ◽  
Julio L. Betancourt ◽  
Jay Quade ◽  
P. Jonathan Patchett ◽  
Jeffrey S. Dean ◽  
...  

1999 ◽  
Vol 14 (3) ◽  
pp. 164-168 ◽  
Author(s):  
Michael J. Pipas ◽  
Gary W. Witmer

Abstract A 2 yr study on the Rogue River and Mt. Hood National Forests in Oregon evaluated physical barriers for protection of Pinus ponderosa seedlings against damage by Thomomys talpoides. Seedlings protected with one of three weights of: (1) plastic mesh tubing (Vexar®) or (2) sandpapertubing (Durite®) were evaluated against control seedlings. On the Rogue River sites, Vexar® seedlings had the highest survival (62.6%), followed by the controls (59.1%), then Durite® seedlings (17.9%). Gophers were the primary cause of death for the Vexar® seedlings, versus desiccation for the Durite® seedlings. On the Mt. Hood sites, heavyweight Vexar® seedlings had the highest survival (35.4%), medium-weight Durite® seedlings the lowest (2.7%). Seedling mortality caused by gophers was highest for controls (70.2%), followed by light-weight (62.2%) and heavy-weight (53.9%) Vexar® treatments. Overall survival was low (Rogue River = 42%, Mt. Hood = 19.8%). Growth was greatest for the control seedlings but only significantly greater than growth of Durite® seedlings on the Rogue River sites. Growth of seedlings was not compromised by the Vexar® tubing. Although neither type of tubing was highly protective, Vexar® tubes performed better than Durite® tubes. West. J. Appl. For. 14(3):164-168.


2003 ◽  
Vol 18 (2) ◽  
pp. 109-114 ◽  
Author(s):  
Steven J. Stein ◽  
Diana N. Kimberling

Abstract Information on the mortality factors affecting naturally seeded conifer seedlings is becoming increasingly important to forest managers for both economic and ecological reasons. Mortality factors affecting ponderosa pine (Pinus ponderosa) seedlings immediately following natural germination and through the following year were monitored in Northern Arizona. The four major mortality factors in temporal order included the failure of roots to establish in the soil (27%), herbivory by lepidopteran larvae (28%), desiccation (30%), and winterkill (10%). These mortality factors were compared among seedlings germinating in three different overstory densities and an experimental water treatment. Seedlings that were experimentally watered experienced greater mortality than natural seedlings due to herbivory (40%), nearly as much mortality due to the failure of roots to establish in the soil (20%), less mortality due to winterkill (5%), and no mortality due to desiccation. The seedling mortality data through time were summarized using survivorship curves and life tables. Our results suggest that managers should consider using prescribed burns to decrease the percentage of seedlings that die from failure of their roots to reach mineral soil and from attack by lepidopteran larvae. West. J. Appl. For. 18(2):109–114.


2008 ◽  
Vol 38 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Gregory Peters ◽  
Anna Sala

Thinning and thinning followed by prescribed fire are common management practices intended to restore historic conditions in low-elevation ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the northern Rocky Mountains. While these treatments generally ameliorate the physiology and growth of residual trees, treatment-specific effects on reproductive output are not known. We examined reproductive output of second-growth ponderosa pine in western Montana 9 years after the application of four treatments: thinning, thinning followed by spring prescribed fire, thinning followed by fall prescribed fire, and unthinned control stands. Field and greenhouse observations indicated that reproductive traits vary depending on the specific management treatment. Cone production was significantly higher in trees from all actively managed stands relative to control trees. Trees subjected to prescribed fire produced cones with higher numbers of filled seeds than trees in unburned treatments. Seed mass, percentage germination, and seedling biomass were significantly lower for seeds from trees in spring burn treatments relative to all others and were generally higher in trees from fall burn treatments. We show for the first time that thinning and prescribed-burning treatments can influence reproductive output in ponderosa pine.


2004 ◽  
Vol 52 (6) ◽  
pp. 757 ◽  
Author(s):  
M. B. Dickinson ◽  
J. Jolliff ◽  
A. S. Bova

Hyperbolic temperature exposures (in which the rate of temperature rise increases with time) and an analytical solution to a rate-process model were used to characterise the impairment of respiration in samples containing both phloem (live bark) and vascular-cambium tissue during exposures to temperatures such as those experienced by the vascular cambium in tree stems heated by forest fires. Tissue impairment was characterised for red maple (Acer rubrum), chestnut oak (Quercus prinus), Douglas fir (Pseudotsuga menziesii), and ponderosa pine (Pinus ponderosa) samples. The estimated temperature dependence of the model’s rate parameter (described by the Arrhenius equation) was a function of the temperature regime to which tissues were exposed. Temperatures rising hyperbolically from near ambient (30°C) to 65°C produced rate parameters for the deciduous species that were similar at 60°C to those from the literature, estimated by using fixed temperature exposures. In contrast, samples from all species showed low rates of impairment, conifer samples more so than deciduous, after exposure to regimes in which temperatures rose hyperbolically between 50 and 60°C. A hypersensitive response could explain an early lag in tissue-impairment rates that apparently caused the differences among heating regimes. A simulation based on stem vascular-cambium temperature regimes measured during fires shows how temperature-dependent impairment rates can be used to predict tissue necrosis in fires. To our knowledge, hyperbolic temperature exposures have not been used to characterise plant tissue thermal tolerance and, given certain caveats, could provide more realistic data more efficiently than fixed-temperature exposures.


1990 ◽  
Vol 20 (10) ◽  
pp. 1559-1569 ◽  
Author(s):  
Christopher H. Baisan ◽  
Thomas W. Swetnam

Modern fire records and fire-scarred remnant material collected from logs, snags, and stumps were used to reconstruct and analyze fire history in the mixed-conifer and pine forest above 2300 m within the Rincon Mountain Wilderness of Saguaro National Monument, Arizona, United States. Cross-dating of the remnant material allowed dating of fire events to the calendar year. Estimates of seasonal occurrence were compiled for larger fires. It was determined that the fire regime was dominated by large scale (> 200 ha), early-season (May–July) surface fires. The mean fire interval over the Mica Mountain study area for the period 1657–1893 was 6.1 years with a range of 1–13 years for larger fires. The mean fire interval for the mixed-conifer forest type (1748–1886) was 9.9 years with a range of 3–19 years. Thirty-five major fire years between 1700 and 1900 were compared with a tree-ring reconstruction of the Palmer drought severity index (PDSI). Mean July PDSI for 2 years prior to fires was higher (wetter) than average, while mean fire year PDSI was near average. This 490-year record of fire occurrence demonstrates the value of high-resolution (annual and seasonal) tree-ring analyses for documenting and interpreting temporal and spatial patterns of past fire regimes.


2003 ◽  
Vol 33 (5) ◽  
pp. 870-884 ◽  
Author(s):  
Rick G Kelsey ◽  
Gladwin Joseph

Sixteen days after a September wildfire, ethanol and water were measured in phloem and sapwood at breast height and the base of Pinus ponderosa Dougl. ex P. & C. Laws. with zero (control), moderate, heavy, and severe crown scorch. The quantity of ethanol increased with each level of injury, resulting in trees with severe scorch containing 15 and 53 times more phloem and sapwood ethanol, respectively, than controls. Ethanol concentrations in the sapwood and adjacent phloem were related, probably as a result of diffusion. Upward movement in xylem sap was most likely responsible for the relationship between sapwood ethanol concentrations at breast height and the stem base. As trees recovered from their heat injuries, the ethanol concentrations declined. In contrast, ethanol accumulated in dead trees that lost their entire crowns in the fire. Various bark and xylophagous beetles landed in greater numbers on fire-damaged trees than on controls the following spring and summer, suggesting that ethanol was being released to the atmosphere and influencing beetle behavior. Beetle landing was more strongly related to sapwood ethanol concentrations the previous September than in May. Sapwood ethanol measured 16 days after the fire was the best predictor of second-year mortality for trees with heavy and severe crown scorch.


Sign in / Sign up

Export Citation Format

Share Document