Sensor fault detection and reconstruction system for commercial aircrafts

2021 ◽  
pp. 1-17
Author(s):  
U. Kilic ◽  
G. Unal

Abstract The aim morphing of this study is to detect and reconstruct a fault in angle-of-attack sensor and pitot probes that are components in commercial aircrafts, without false alarm and no need for additional measurements. Real flight data collected from a local airline was used to design the relevant system. Correlation analysis was performed to select the data related to the angle-of-attack and airspeed. Fault detection and reconstruction were carried out by using Adaptive Neural Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANN), which are machine-learning methods. No false alarm was detected when the fault test following the fault modeling was carried out at 0–1 s range by filtering the residual signal. When the fault was detected, fault reconstruction process was initiated so that system output could be achieved according to estimated sensor data. Instead of using the methods based on hardware redundancy, we designed a new system within the scope of this study.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ugur Kilic ◽  
Gulay Unal

Purpose The purpose of this study is to detect and reconstruct a fault in pitot probe and static ports, which are components of the air data system in commercial aircrafts, without false alarm and no need for pitot-static measurements. In this way, flight crew will be prevented from flying according to incorrect data and aircraft accidents that may occur will be prevented. Design/methodology/approach Real flight data collected from a local airline was used to design the relevant system. Correlation analysis was performed to select the data related to the airspeed and altitude. Fault detection and reconstruction were carried out by using adaptive neural fuzzy inference system and artificial neural networks, which are machine learning methods. MATLAB software was used for all the calculations. Findings No false alarm was detected when the fault test following the fault modeling was carried out at 0–2 s range by filtering the residual signal. When the fault was detected, fault reconstruction process was initiated so that system output could be achieved according to estimated sensor data. Practical implications The presented alternative analytical redundant airspeed and altitude calculation scheme could be used when the pitot-static system contains any fault condition. Originality/value Instead of using the methods based on hardware redundancy, the authors designed a new system within the scope of this study. Fault situations that may occur in pitot probes and static ports are modeled and different fault scenarios that can be encountered in all flight phases have been examined.


Intrusion Detection System (IDS) is the nearly all imperative constituent of computer network security. IDSs are designed to comprehend intrusion attempts in incoming network traffic shrewdly. It deals with big volume of data containing immaterial and outmoded features, which lead to delay in training as well as testing procedures. Therefore, to minimize the false alarm and computation complexity, the features selection technique for intrusion detection has been implemented. In this paper PCA (Principal Component Analysis) and Fuzzy Inference System (FIS) have been used on kdd99 dataset to develop FC-NIDS model. PCA is used to select the attacked features to minimize the computational work, while FIS is used to develop a fuzzy inference system for accuracy in prophecy using MATLAB. The results of the experiment are tested on UCI data sets as a standard bench-mark. It has been found efficient for true prediction of intrusion as well as to reduce the false alarm rate. The proposed fuzzy logic controller IDS (FC-NIDS), is passable to covenant with signature and anomaly based attacks to get enhanced intrusion detection, decreases false alarm and to optimize complexity.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2269
Author(s):  
Ahmed F. Bendary ◽  
Almoataz Y. Abdelaziz ◽  
Mohamed M. Ismail ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
...  

In the last few decades, photovoltaics have contributed deeply to electric power networks due to their economic and technical benefits. Typically, photovoltaic systems are widely used and implemented in many fields like electric vehicles, homes, and satellites. One of the biggest problems that face the relatability and stability of the electrical power system is the loss of one of the photovoltaic modules. In other words, fault detection methods designed for photovoltaic systems are required to not only diagnose but also clear such undesirable faults to improve the reliability and efficiency of solar farms. Accordingly, the loss of any module leads to a decrease in the efficiency of the overall system. To avoid this issue, this paper proposes an optimum solution for fault finding, tracking, and clearing in an effective manner. Specifically, this proposed approach is done by developing one of the most promising techniques of artificial intelligence called the adaptive neuro-fuzzy inference system. The proposed fault detection approach is based on associating the actual measured values of current and voltage with respect to the trained historical values for this parameter while considering the ambient changes in conditions including irradiation and temperature. Two adaptive neuro-fuzzy inference system-based controllers are proposed: (1) the first one is utilized to detect the faulted string and (2) the other one is utilized for detecting the exact faulted group in the photovoltaic array. The utilized model was installed using a configuration of 4 × 4 photovoltaic arrays that are connected through several switches, besides four ammeters and four voltmeters. This study is implemented using MATLAB/Simulink and the simulation results are presented to show the validity of the proposed technique. The simulation results demonstrate the innovation of this study while proving the effective and high performance of the proposed adaptive neuro-fuzzy inference system-based approach in fault tracking, detection, clearing, and rearrangement for practical photovoltaic systems.


Author(s):  
B. Samanta

A study is presented to show the performance of machine fault detection using adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithms (GAs), termed here as GA-ANFIS. The time domain vibration signals of a rotating machine with normal and defective gears are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to GA-ANFIS for two class (normal or fault) recognition. The number and the parameters of membership functions used in ANFIS along with the features are selected using GAs maximizing the classification success. The results of fault detection are compared with GA based artificial neural network (ANN), termed here as GA-ANN. In GA-ANN, the number of hidden nodes and the selection of input features are optimized using GAs. For each trial, the GA-ANFIS and GA-ANN are trained with a subset of the experimental data for known machine conditions. The trained GA-ANFIS and GA-ANN are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a gearbox. The results compare the effectiveness of both types of classifiers (ANFIS and ANN) with GA based selection of features and classifier parameters.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Liu ◽  
Yang Yang ◽  
Xiaopeng Lv ◽  
Lifeng Wang

Many applications based on Internet of Things (IoT) technology have recently founded in industry monitoring area. Thousands of sensors with different types work together in an industry monitoring system. Sensors at different locations can generate streaming data, which can be analyzed in the data center. In this paper, we propose a framework for online sensor fault detection. We motivate our technique in the context of the problem of the data value fault detection and event detection. We use the Statistics Sliding Windows (SSW) to contain the recent sensor data and regress each window by Gaussian distribution. The regression result can be used to detect the data value fault. Devices on a production line may work in different workloads and the associate sensors will have different status. We divide the sensors into several status groups according to different part of production flow chat. In this way, the status of a sensor is associated with others in the same group. We fit the values in the Status Transform Window (STW) to get the slope and generate a group trend vector. By comparing the current trend vector with history ones, we can detect a rational or irrational event. In order to determine parameters for each status group we build a self-learning worker thread in our framework which can edit the corresponding parameter according to the user feedback. Group-based fault detection (GbFD) algorithm is proposed in this paper. We test the framework with a simulation dataset extracted from real data of an oil field. Test result shows that GbFD detects 95% sensor fault successfully.


Sign in / Sign up

Export Citation Format

Share Document