scholarly journals On the potential of hand-held GPS tracking of fjord ice features for remote-sensing validation

2017 ◽  
Vol 59 (76pt2) ◽  
pp. 173-180 ◽  
Author(s):  
Jean Negrel ◽  
Sebastian Gerland ◽  
Anthony P. Doulgeris ◽  
Tom Rune Lauknes ◽  
Line Rouyet

ABSTRACTResearch on young thin sea ice is essential to understand the changes in the Arctic. But it is also the most challenging to investigate, both in situ and from satellites. If satellite remote-sensing techniques are developing rapidly, fieldwork remains crucial for the mandatory validation of such data. In April 2016, an Arctic fieldwork campaign was conducted at Kongsfjorden, Svalbard. This campaign provided an opportunity to combine various techniques to record the fjord ice properties ranging from local field sampling to broader ground-based and satellite radar remote sensing of the fjord. Tracking the boat used to access the field sites with hand-held GPS devices offered a good opportunity to map fjord ice and assess the limits of radar identification of small icebergs and thin ice. During 1 week, 17 icebergs and the thin ice edges in two different locations were mapped. The GPS tracks present a good agreement with the Radarsat-2 data analysis for one of the two ice edges. The second ice edge track only partly corresponds to the radar scene. Ice movement, recorded by a ground-based radar, is likely to explain this result. Grounded icebergs could be identified in both Radarsat-2 and ground-based radar.

Author(s):  
Richard H. Bennett ◽  
Huon Li ◽  
Michael D. Richardson ◽  
Peter Fleischer ◽  
Douglas N. Lambert ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
pp. 2267-2285
Author(s):  
Simone Brunamonti ◽  
Giovanni Martucci ◽  
Gonzague Romanens ◽  
Yann Poltera ◽  
Frank G. Wienhold ◽  
...  

Abstract. Remote-sensing measurements by light detection and ranging (lidar) instruments are fundamental for the monitoring of altitude-resolved aerosol optical properties. Here we validate vertical profiles of aerosol backscatter coefficient (βaer) measured by two independent lidar systems using co-located balloon-borne measurements performed by Compact Optical Backscatter Aerosol Detector (COBALD) sondes. COBALD provides high-precision in situ measurements of βaer at two wavelengths (455 and 940 nm). The two analyzed lidar systems are the research Raman Lidar for Meteorological Observations (RALMO) and the commercial CHM15K ceilometer (Lufft, Germany). We consider in total 17 RALMO and 31 CHM15K profiles, co-located with simultaneous COBALD soundings performed throughout the years 2014–2019 at the MeteoSwiss observatory of Payerne (Switzerland). The RALMO (355 nm) and CHM15K (1064 nm) measurements are converted to 455 and 940 nm, respectively, using the Ångström exponent profiles retrieved from COBALD data. To account for the different receiver field-of-view (FOV) angles between the two lidars (0.01–0.02∘) and COBALD (6∘), we derive a custom-made correction using Mie-theory scattering simulations. Our analysis shows that both lidar instruments achieve on average a good agreement with COBALD measurements in the boundary layer and free troposphere, up to 6 km altitude. For medium-high-aerosol-content measurements at altitudes below 3 km, the mean ± standard deviation difference in βaer calculated from all considered soundings is −2 % ± 37 % (−0.018 ± 0.237 Mm−1 sr−1 at 455 nm) for RALMO−COBALD and +5 % ± 43 % (+0.009 ± 0.185 Mm−1 sr−1 at 940 mm) for CHM15K−COBALD. Above 3 km altitude, absolute deviations generally decrease, while relative deviations increase due to the prevalence of air masses with low aerosol content. Uncertainties related to the FOV correction and spatial- and temporal-variability effects (associated with the balloon's drift with altitude and different integration times) contribute to the large standard deviations observed at low altitudes. The lack of information on the aerosol size distribution and the high atmospheric variability prevent an accurate quantification of these effects. Nevertheless, the excellent agreement observed in individual profiles, including fine and complex structures in the βaer vertical distribution, shows that under optimal conditions, the discrepancies with the in situ measurements are typically comparable to the estimated statistical uncertainties in the remote-sensing measurements. Therefore, we conclude that βaer profiles measured by the RALMO and CHM15K lidar systems are in good agreement with in situ measurements by COBALD sondes up to 6 km altitude.


2014 ◽  
Vol 11 (13) ◽  
pp. 3547-3602 ◽  
Author(s):  
P. Ciais ◽  
A. J. Dolman ◽  
A. Bombelli ◽  
R. Duren ◽  
A. Peregon ◽  
...  

Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.


2019 ◽  
Author(s):  
Guillaume Jouvet ◽  
Eef van Dongen ◽  
Martin P. Lüthi ◽  
Andreas Vieli

Abstract. Measuring the ice flow motion accurately is essential to better understand the time evolution of glaciers and ice sheets, and therefore to better anticipate the future consequence of climate change in terms of sea-level rise. Although there exist a variety of remote sensing methods to fill this task, in-situ measurements are always needed for validation or to capture high temporal resolution movements. Yet glaciers are in general hostile environments where the installation of instruments might be tedious and risky when not impossible. Here we report the first-ever in-situ measurements of ice flow motion using a remotely controlled Unmanned Aerial Vehicle (UAV). We used a multicopter UAV to land on a highly crevassed area of Eqip Sermia Glacier, West Greenland, to measure the displacement of the glacial surface with the aid of an on-board differential GNSS receiver. Despite the unfortunate loss of the UAV, we measured approximately 70 cm of displacement over 4.36 hours without setting foot onto the glacier – a result validated by applying UAV photogrammetry and template matching techniques. Our study demonstrates that UAVs are promising instruments for in-situ monitoring, and have a great potential for capturing short-term ice flow variations in inaccessible glaciers – a task that remote sensing techniques can hardly achieve.


2020 ◽  
Vol 12 (17) ◽  
pp. 2774
Author(s):  
Marta Konik ◽  
Piotr Kowalczuk ◽  
Monika Zabłocka ◽  
Anna Makarewicz ◽  
Justyna Meler ◽  
...  

The Nordic Seas and the Fram Strait regions are a melting pot of a number of water masses characterized by distinct optical water properties. The warm Atlantic Waters transported from the south and the Arctic Waters from the north, combined with the melt waters contributing to the Polar Waters, mediate the dynamic changes of the year-to-year large-scale circulation patterns in the area, which often form complex frontal zones. In the last decade, moreover, a significant shift in phytoplankton phenology in the area has been observed, with a certain northward expansion of temperate phytoplankton communities into the Arctic Ocean which could lead to a deterioration in the performance of remote sensing algorithms. In this research, we exploited the capability of the satellite sensors to monitor those inter-annual changes at basin scales. We propose locally adjusted algorithms for retrieving chlorophyll a concentrations Chla, absorption by particles ap at 443 and 670 nm, and total absorption atot at 443 and 670 nm developed on the basis of intensive field work conducted in 2013–2015. Measured in situ hyper spectral remote sensing reflectance has been used to reconstruct the MODIS and OLCI spectral channels for which the proposed algorithms have been adapted. We obtained MNB ≤ 0.5% for ap(670) and ≤3% for atot(670) and Chla. RMS was ≤30% for most of the retrieved optical water properties except ap(443) and Chla. The mean monthly mosaics of ap(443) computed on the basis of the proposed algorithm were used for reconstructing the spatial and temporal changes of the phytoplankton biomass in 2013–2015. The results corresponded very well with in situ measurements.


2020 ◽  
Author(s):  
Tuukka Petäjä ◽  
Ella-Maria Duplissy ◽  
Ksenia Tabakova ◽  
Julia Schmale ◽  
Barbara Altstädter ◽  
...  

Abstract. The role of polar regions increases in terms of megatrends such as globalization, new transport routes, demography and use of natural resources consequent effects of regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project iCUPE – integrative and Comprehensive Understanding on Polar Environments to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth Observations (EO) and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns and satellites to deliver data products, metrics and indicators to the stakeholders concerning the environmental status, availability and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and provision of novel data in atmospheric pollution, local sources and transboundary transport, characterization of arctic surfaces and their changes, assessment of concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, quantification of emissions from natural resource extraction and validation and optimization of satellite Earth Observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of integration of comprehensive in situ observations, satellite remote sensing and multiscale modeling in the Arctic context.


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 277 ◽  
Author(s):  
Ali Nadir Arslan ◽  
Zuhal Akyürek

Snow cover is an essential climate variable directly affecting the Earth’s energy balance. Snow cover has a number of important physical properties that exert an influence on global and regional energy, water, and carbon cycles. Remote sensing provides a good understanding of snow cover and enable snow cover information to be assimilated into hydrological, land surface, meteorological, and climate models for predicting snowmelt runoff, snow water resources, and to warn about snow-related natural hazards. The main objectives of this Special Issue, “Remote Sensing of Snow and Its Applications” in Geosciences are to present a wide range of topics such as (1) remote sensing techniques and methods for snow, (2) modeling, retrieval algorithms, and in-situ measurements of snow parameters, (3) multi-source and multi-sensor remote sensing of snow, (4) remote sensing and model integrated approaches of snow, and (5) applications where remotely sensed snow information is used for weather forecasting, flooding, avalanche, water management, traffic, health and sport, agriculture and forestry, climate scenarios, etc. It is very important to understand (a) differences and similarities, (b) representativeness and applicability, (c) accuracy and sources of error in measuring of snow both in-situ and remote sensing and assimilating snow into hydrological, land surface, meteorological, and climate models. This Special Issue contains nine articles and covers some of the topics we listed above.


2017 ◽  
Vol 58 ◽  
pp. 10.1-10.21 ◽  
Author(s):  
J. Bühl ◽  
S. Alexander ◽  
S. Crewell ◽  
A. Heymsfield ◽  
H. Kalesse ◽  
...  

Abstract State-of-the-art remote sensing techniques applicable to the investigation of ice formation and evolution are described. Ground-based and spaceborne measurements with lidar, radar, and radiometric techniques are discussed together with a global view on past and ongoing remote sensing measurement campaigns concerned with the study of ice formation and evolution. This chapter has the intention of a literature study and should illustrate the major efforts that are currently taken in the field of remote sensing of atmospheric ice. Since other chapters of this monograph mainly focus on aircraft in situ measurements, special emphasis is put on active remote sensing instruments and synergies between aircraft in situ measurements and passive remote sensing methods. The chapter concentrates on homogeneous and heterogeneous ice formation in the troposphere because this is a major topic of this monograph. Furthermore, methods that deliver direct, process-level information about ice formation are elaborated with a special emphasis on active remote sensing methods. Passive remote sensing methods are also dealt with but only in the context of synergy with aircraft in situ measurements.


2014 ◽  
Vol 14 (20) ◽  
pp. 11525-11544 ◽  
Author(s):  
W. Woiwode ◽  
J.-U. Grooß ◽  
H. Oelhaf ◽  
S. Molleker ◽  
S. Borrmann ◽  
...  

Abstract. Vertical redistribution of HNO3 through large HNO3-containing particles associated with polar stratospheric clouds (PSCs) plays an important role in the chemistry of the Arctic winter stratosphere. During the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) campaign, apparently very large NAT (nitric acid trihydrate) particles were observed by the airborne in situ probe FSSP-100 (Molleker et al., 2014). Our analysis shows that the FSSP-100 observations associated with the flight on 25 January 2010 cannot easily be explained assuming compact spherical NAT particles due to much too short growing time at temperatures below the existence temperature of NAT (TNAT). State-of-the-art simulations using CLaMS (Chemical Lagrangian Model of the Stratosphere; Grooß et al., 2014) suggest considerably smaller particles. We consider the hypothesis that the simulation reproduces the NAT particle masses in a realistic way, but that real NAT particles may have larger apparent sizes compared to compact spherical particles, e.g. due to non-compact morphology or aspheric shape. Our study focuses on the consequence that such particles would have reduced settling velocities compared to compact spheres, altering the vertical redistribution of HNO3. Utilising CLaMS simulations, we investigate the impact of reduced settling velocities of NAT particles on vertical HNO3 redistribution and compare the results with observations of gas-phase HNO3 by the airborne Fourier transform spectrometer MIPAS-STR associated with two RECONCILE flights. The MIPAS-STR observations confirm conditions consistent with denitrification by NAT particles for the flight on 25 January 2010 and show good agreement with the simulations within the limitations of the comparison. Best agreement is found if settling velocities between 100 and 50% relative to compact spherical particles are considered (slight preference for the 70% scenario). In contrast, relative settling velocities of 30% result in too weak vertical HNO3 redistribution. Sensitivity simulations considering temperature biases of ±1 K and multiplying the simulated nucleation rates by factors of 0.5 and 2.0 affect the comparisons to a similar extent, but result in no effective improvement compared to the reference scenario. Our results show that an accurate knowledge of the settling velocities of NAT particles is important for quantitative simulations of vertical HNO3 redistribution.


2013 ◽  
Vol 40 (2) ◽  
pp. 417-422 ◽  
Author(s):  
Luke D. Ziemba ◽  
K. Lee Thornhill ◽  
Rich Ferrare ◽  
John Barrick ◽  
Andreas J. Beyersdorf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document