scholarly journals Antibiotic exposure and acquisition of antibiotic-resistant gram-negative bacteria among outpatients at a US Veterans Affairs medical center

Author(s):  
Ukwen C. Akpoji ◽  
Brigid M. Wilson ◽  
Janet M. Briggs ◽  
Sunah Song ◽  
Taissa A. Bej ◽  
...  

Abstract Objectives: To assess the prevalence of antibiotic-resistant gram-negative bacteria (R-GNB) among patients without recent hospitalization and to examine the influence of outpatient antibiotic exposure on the risk of acquiring R-GNB in this population. Design: 2-year retrospective cohort study. Setting: Regional Veterans Affairs healthcare system. Patients: Outpatients at 13 community-based clinics. Methods: We examined the rate of acquisition of R-GNB within 90 days following an outpatient visit from 2018 to 2019. We used clinical and administrative databases to determine and summarize prescriptions for systemic antibiotics, associated infectious diagnoses, and subsequent R-GNB acquisition among patients without recent hospitalizations. We also calculated the odds ratio of R-GNB acquisition following antibiotic exposure. Results: During the 2-year study period, 7,215 patients had outpatient visits with microbiological cultures obtained within 90 days. Of these patients, 206 (2.9%) acquired an R-GNB. Among patients receiving antibiotics at the visit, 4.6% acquired a R-GNB compared to 2.7% among patients who did not receive antibiotics, yielding an unadjusted odds ratio of 1.75 (95% confidence interval, 1.18–2.52) for a R-GNB following an outpatient visit with versus without an antibiotic exposure. Regardless of R-GNB occurrence, >50% of antibiotic prescriptions were issued at visits without an infectious disease diagnosis or issued without documentation of an in-person or telehealth clinical encounter. Conclusions: Although the rate of R-GNBs was low (2.9%), the 1.75-fold increased odds of acquiring a R-GNB following an outpatient antibiotic highlights the importance of antimicrobial stewardship efforts in outpatient settings. Specific opportunities include reducing antibiotics prescribed without an infectious diagnosis or a clinical visit.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shira Mandel ◽  
Janna Michaeli ◽  
Noa Nur ◽  
Isabelle Erbetti ◽  
Jonathan Zazoun ◽  
...  

AbstractNew antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.


2001 ◽  
Vol 22 (7) ◽  
pp. 414-418 ◽  
Author(s):  
Amy Beth Kressel ◽  
Francine Kidd

AbstractObjective:To evaluate an unusual number of rapidly growing acid-fast bacilli, later identified asMycobacterium chelonae,and pink bacteria, later identified asMethylo-bacterium mesophilicum,from fungal cultures obtained by bronchoscopy.Design:Outbreak investigation.Setting:An academic medical center performing approximately 500 bronchoscopies and 4,000 gastrointestinal endoscopies in 1998.Patients:Patients undergoing bronchoscopy July 21 to October 2, 1998.Methods:The infection control department reviewed patient charts and bronchoscopy logs; obtained cultures of source water, faucets, washers, unopened glutaraldehyde, glutaraldehyde from the washers, and endoscopes; observed endoscope and bronchoscope cleaning and disinfecting procedures; reviewed glutaraldehyde monitoring records; and sentM chelonaeisolates for DNA fingerprinting.Results:M chelonae, M mesophilicum,gram-negative bacteria, and various molds grew from endoscopes, automated washers, and glutaraldehyde from the washers but not from unopened glutaraldehyde. The endoscopy unit regularly monitored the pH of glutaraldehyde, and the logs contained no deficiencies. The above sources remained positive for the same organisms after a glutaraldehyde cleaning cycle of the automated washers. DNA fingerprinting of theM chelonaerevealed that they were clonally related.Conclusions:The automated washers were contaminated with a biofilm that rendered them resistant to decontamination. The washers then contaminated the endoscopes and bronchoscopes they were used to disinfect. Our institution purchased new endoscopes and a new paracetic acid sterilization system.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 162 ◽  
Author(s):  
Monica Francesca Blasi ◽  
Luciana Migliore ◽  
Daniela Mattei ◽  
Alice Rotini ◽  
Maria Cristina Thaller ◽  
...  

Sea turtles have been proposed as health indicators of marine habitats and carriers of antibiotic-resistant bacterial strains, for their longevity and migratory lifestyle. Up to now, a few studies evaluated the antibacterial resistant flora of Mediterranean loggerhead sea turtles (Caretta caretta) and most of them were carried out on stranded or recovered animals. In this study, the isolation and the antibiotic resistance profile of 90 Gram negative bacteria from cloacal swabs of 33 Mediterranean wild captured loggerhead sea turtles are described. Among sea turtles found in their foraging sites, 23 were in good health and 10 needed recovery for different health problems (hereafter named weak). Isolated cloacal bacteria belonged mainly to Enterobacteriaceae (59%), Shewanellaceae (31%) and Vibrionaceae families (5%). Although slight differences in the bacterial composition, healthy and weak sea turtles shared antibiotic-resistant strains. In total, 74 strains were endowed with one or multi resistance (up to five different drugs) phenotypes, mainly towards ampicillin (~70%) or sulfamethoxazole/trimethoprim (more than 30%). Hence, our results confirmed the presence of antibiotic-resistant strains also in healthy marine animals and the role of the loggerhead sea turtles in spreading antibiotic-resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document