Quantum mechanics, quantum computing, and quantum cryptography

Author(s):  
Tai Tsun Wu
Author(s):  
Lance Fortnow

This chapter examines the power of quantum computing, as well as the related concepts of quantum cryptography and teleportation. In 1982, the Nobel prize-winning physicist Richard Feynman noticed there was no simple way of simulating quantum physical systems using digital computers. He turned this problem into an opportunity—perhaps a computational device based on quantum mechanics could solve problems more efficiently than more traditional computers. In the decades that followed, computer scientists and physicists, often working together, showed in theory that quantum computers can solve certain problems, such as factoring numbers, much faster. Whether one can actually build large or even medium-scale working quantum computers and determine exactly what these computers can or cannot do still remain significant challenges.


Author(s):  
Aarti Dadheech

Quantum cryptography is a branch of cryptography that is a mixture of quantum mechanics and classical cryptography. The study of quantum cryptography is to design cryptographic algorithms and protocols that are against quantum computing attacks. In this chapter, the authors focus on analyzing characteristics of the quantum-proof cryptosystem and its applications in the future internet. Lattice-based cryptography provides a much stronger belief of security, in that the average-case of certain problems is equivalent to the worst-case of those problems. With the increase in cryptanalytic attacks conventional cryptographic schemes will soon become obsolete. As the reality of quantum computing approaches, these cryptosystems will need to be replaced with efficient quantum-resistant cryptosystems. We need an alternate security mechanism which is as hard as the existing number theoretic approaches. In this chapter, the authors discuss the security dimension of lattice-based cryptography whose strength lies in the hardness of lattice problems and also study its application areas.


2021 ◽  
pp. 05-12
Author(s):  
Mandeep Kaur Sandhu ◽  
◽  
◽  
◽  
Manav .. ◽  
...  

In the field of cryptography, new tasks are generated when advancement has taken place from conventional computing to quantum computing. In the case of computer security, cryptography had always been a valuable and essential tool. When quantum mechanics principles are applied to cryptography, it gives rise to a new system that will secure communication and also assures that no spying can take place. The work below presents the review on quantum cryptography, which includes the concept of quantum cryptography and what can be its evaluation measures. Articles of quantum cryptography from various databases have been studied. In this SLR various research questions are identified and on the basis of the results of their answers have been formulated for this review along with that various performance measures are also discussed.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


2020 ◽  
Author(s):  
Joachim Taiber ◽  

Quantum computing is considered the “next big thing” when it comes to solving computational problems impossible to tackle using conventional computers. However, a major concern is that quantum computers could be used to crack current cryptographic schemes designed to withstand traditional cyberattacks. This threat also impacts future automated vehicles as they become embedded in a vehicle-to-everything (V2X) ecosystem. In this scenario, encrypted data is transmitted between a complex network of cloud-based data servers, vehicle-based data servers, and vehicle sensors and controllers. While the vehicle hardware ages, the software enabling V2X interactions will be updated multiple times. It is essential to make the V2X ecosystem quantum-safe through use of “post-quantum cryptography” as well other applicable quantum technologies. This SAE EDGE™ Research Report considers the following three areas to be unsettled questions in the V2X ecosystem: How soon will quantum computing pose a threat to connected and automated vehicle technologies? What steps and measures are needed to make a V2X ecosystem “quantum-safe?” What standardization is needed to ensure that quantum technologies do not pose an unacceptable risk from an automotive cybersecurity perspective?


2021 ◽  
Vol 2056 (1) ◽  
pp. 012059
Author(s):  
I N Balaba ◽  
G S Deryabina ◽  
I A Pinchuk ◽  
I V Sergeev ◽  
S B Zabelina

Abstract The article presents a historical overview of the development of the mathematical idea of a quantum computing model - a new computational strategy based on the postulates of quantum mechanics and having advantages over the traditional computational model based on the Turing machine; clarified the features of the operation of multi-qubit quantum systems, which ensure the creation of efficient algorithms; the principles of quantum computing are outlined and a number of efficient quantum algorithms are described that allow solving the problem of exponential growth of the complexity of certain problems.


2005 ◽  
Vol 5 (2) ◽  
pp. 170-175
Author(s):  
H. Halvorson ◽  
J. Bub

Clifton, Bub, and Halvorson (CBH) have argued that quantum mechanics can be derived from three cryptographic, or broadly information-theoretic, axioms. But Smolin disagrees, and he has given a toy theory that he claims is a counterexample. Here we show that Smolin's toy theory violates an independence condition for spacelike separated systems that was assumed in the CBH argument. We then argue that any acceptable physical theory should satisfy this independence condition.


Author(s):  
Bhanu Chander

Quantum cryptography is actions to protect transactions through executing the circumstance of quantum physics. Up-to-the-minute cryptography builds security over the primitive ability of fragmenting enormous numbers into relevant primes; however, it features inconvenience with ever-increasing machine computing power along with current mathematical evolution. Among all the disputes, key distribution is the most important trouble in classical cryptography. Quantum cryptography endows with clandestine communication by means of offering a definitive protection statement with the rule of the atmosphere. Exploit quantum mechanics to cryptography can be enlarging unrestricted, unfailing information transmission. This chapter describes the contemporary state of classical cryptography along with the fundamentals of quantum cryptography, quantum protocol key distribution, implementation criteria, quantum protocol suite, quantum resistant cryptography, and large-scale quantum key challenges.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


Sign in / Sign up

Export Citation Format

Share Document