Multiple exciton generation in semiconductor quantum dots and electronically coupled quantum dot arrays for application to thirdgeneration photovoltaic solar cells

Author(s):  
Matthew C. Beard ◽  
Joey M. Luther ◽  
Arthur J. Nozik
Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13368-13374 ◽  
Author(s):  
Sushant Ghimire ◽  
Anjaly Sivadas ◽  
Ken-ichi Yuyama ◽  
Yuta Takano ◽  
Raju Francis ◽  
...  

The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices.


MRS Bulletin ◽  
2007 ◽  
Vol 32 (3) ◽  
pp. 236-241 ◽  
Author(s):  
Antonio Luque ◽  
Antonio Martí ◽  
Arthur J. Nozik

AbstractSemiconductor quantum dots may be used in so-called third-generation solar cells that have the potential to greatly increase the photon conversion efficiency via two effects: (1) the production of multiple excitons from a single photon of sufficient energy and (2) the formation of intermediate bands in the bandgap that use sub-bandgap photons to form separable electron–hole pairs. This is possible because quantization of energy levels in quantum dots produces the following effects: enhanced Auger processes and Coulomb coupling between charge carriers; elimination of the requirement to conserve crystal momentum; slowed hot electron–hole pair (exciton) cooling; multiple exciton generation; and formation of minibands (delocalized electronic states) in quantum dot arrays. For exciton multiplication, very high quantum yields of 300–700% for exciton formation in PbSe, PbS, PbTe, and CdSe quantum dots have been reported at photon energies about 4–8 times the HOMO–LUMO transition energy (quantum dot bandgap), respectively, indicating the formation of 3–7 excitons/photon, depending upon the photon energy. For intermediate-band solar cells, quantum dots are used to create the intermediate bands from the con fined electron states in the conduction band. By means of the intermediate band, it is possible to absorb below-bandgap energy photons. This is predicted to produce solar cells with enhanced photocurrent without voltage degradation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

AbstractAll-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.


2013 ◽  
Vol 873 ◽  
pp. 556-561
Author(s):  
Jian Jun Tian

CdS/CdSe quantum dots co-sensitized solar cells (QDSCs) were prepared by combining the successive ion layer absorption and reaction (SILAR) method and chemical bath deposition (CBD) method for the fabrication of CdS and CdSe quantum dots, respectively. In this work, we designed anisotropic nanostructure ZnO photoelectrodes, such as nanorods/nanosheets and nanorods array, for CdS/CdSe quantum dots co-sensitized solar cells. Our study revealed that the performance of QDSCs could be improved by modifying surface of ZnO to increase the loading of quantum dots and reduce the charge recombination.


2019 ◽  
Vol 125 (8) ◽  
Author(s):  
Ha Thanh Tung ◽  
Doan Van Thuan ◽  
Jun Hieng Kiat ◽  
Dang Huu Phuc

2017 ◽  
Vol 9 (27) ◽  
pp. 22549-22559 ◽  
Author(s):  
Wenran Wang ◽  
Guocan Jiang ◽  
Juan Yu ◽  
Wei Wang ◽  
Zhenxiao Pan ◽  
...  

2012 ◽  
pp. 297-316
Author(s):  
Kimberly A. Sablon ◽  
V. Mitin ◽  
J. W. Little ◽  
A. Sergeev ◽  
N. Vagidov

Sign in / Sign up

Export Citation Format

Share Document