Continuous-wave methods for tissue spectroscopy

2018 ◽  
pp. 317-347
Keyword(s):  
2020 ◽  
Vol 17 (2) ◽  
pp. 172988142092164
Author(s):  
Yuxuan Wu ◽  
Feng Shen ◽  
Dingjie Xu

In recent years, the environmental perception technology for robotic system has attracted a lot of attention from researchers, but only a little of studies on environmental perception technology are focused on the space underground. Meanwhile, in the field of mobile robotic systems, with the development of research on underground emergency hedging and buried targets’ high-resolution fault imaging, more and more attention has also been paid to underground environmental detection and perception. This article proposes a ground-penetrating radar-based underground environmental perception radar (UEPR) for mobile robotic system indoors. The underground environmental perception radar can achieve noncontact and real-time perception, which helps people detect buried targets and get the image of targets more conveniently and precisely. Major contributions of this work are threefold. Firstly, a stepped frequency continuous wave modulation and demodulation scheme is proposed; secondly, a switch device for a six-channel antenna array is designed and contributed; thirdly, based on a linear antenna array and a signal processing platform, the underground environmental perception radar is supposed to achieve three-dimensional imaging in underground space indoors with its low power consumption. For the experiment of three-dimensional imaging on the copper box and underground environment indoors, the process of imaging is successful, although the size of them is a little bigger than the real size. In addition, the comparison experiment shows that the resolution of underground environmental perception radar system is similar with that of sound wave methods, and the working range of underground environmental perception radar system is deeper than the others. It can be concluded that the underground environmental perception radar can detect the copper box underground and perceive something special within 1.5 m depth.


Author(s):  
P. A. Molian ◽  
K. H. Khan ◽  
W. E. Wood

In recent years, the effects of chromium on the transformation characteristics of pure iron and the structures produced thereby have been extensively studied as a function of cooling rate. In this paper, we present TEM observations made on specimens of Fe-10% Cr and Fe-20% Cr alloys produced through laser surface alloying process with an estimated cooling rate of 8.8 x 104°C/sec. These two chromium levels were selected in order to study their phase transformation characteristics which are dissimilar in the two cases as predicted by the constitution diagram. Pure iron (C<0.01%, Si<0.01%, Mn<0.01%, S=0.003%, P=0.008%) was electrodeposited with chromium to the thicknesses of 40 and 70μm and then vacuum degassed at 400°F to remove the hydrogen formed during electroplating. Laser surface alloying of chromium into the iron substrate was then performed employing a continuous wave CO2 laser operated at an incident power of 1200 watts. The laser beam, defocussed to a spot diameter of 0.25mm, scanned the material surface at a rate of 30mm/sec, (70 ipm).


2007 ◽  
Vol 177 (4S) ◽  
pp. 614-614
Author(s):  
Thorsten Bach ◽  
Thomas R.W. Herrmann ◽  
Roman Ganzer ◽  
Andreas J. Gross

Phlebologie ◽  
2000 ◽  
Vol 29 (05) ◽  
pp. 142-145
Author(s):  
T. Hertel ◽  
B. Kahle ◽  
H. G. Kluess ◽  
M. Marshall ◽  
E. Rabe ◽  
...  
Keyword(s):  

2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


2016 ◽  
Vol 3 (1) ◽  
pp. 1-16
Author(s):  
J. Laman ◽  
◽  
A. Srivastava ◽  
A. Schokker
Keyword(s):  

2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


Sign in / Sign up

Export Citation Format

Share Document