scholarly journals Multi-level Decomposed Systems Design: Converting a Requirement Specification into an Optimization Problem

Author(s):  
T. F. Beernaert ◽  
L. F. P. Etman

AbstractComplex technological artefacts are often decomposed into smaller components to keep their design manageable. The resulting challenge is to coordinate decisions that involve multiple components and to design components such that high-level targets are met. Analytical Target Cascading (ATC) is an analytical coordination method for the optimization of decomposed systems, which we aim to incorporate in systems engineering design process. To this extent, we relate the domain of engineering optimization to the domain of requirements engineering, and propose a method that constructs an ATC problem from functional specifications and requirements written in the newly developed Elephant Specification Language. The proposed method is demonstrated in the two-level design of an automotive powertrain. This contribution is a step towards design automation and is expected to increase the usability of decomposed optimization techniques.

Author(s):  
Stephanie Stockar ◽  
Cristian Rostiti ◽  
Marcello Canova ◽  
Michael Prucka

Abstract The design, calibration and integration of powertrain control algorithms has become significantly more complex in recent years, as the automotive industry faces increasing challenges in meeting consumer requirements and government regulations. Traditionally, the powertrain control engineering design process develops the engine and transmission controllers independently and then integrates them after an initial calibration. This process can lead to suboptimal performance and requires additional calibration and verification steps to improve the coordination of the various subsystems. This paper proposes a novel approach to achieve a systematic, high-level coordination, and optimization of the control strategy in an automotive powertrain system that will reduce overall calibration effort. Optimized set-points for engine and transmission controls are generated based on joint optimization of fuel consumption and drivability using Model Predictive Control to manage both continuous and discrete control variables. Simulation results confirm the control decisions made by the proposed coordinator match a well-calibrated production ECU with little tuning effort.


2004 ◽  
Vol 127 (3) ◽  
pp. 499-501 ◽  
Author(s):  
Jeremy J. Michalek ◽  
Panos Y. Papalambros

This technical note provides clarification, modification, and generalization of the notation used to describe analytical target cascading, a model-based hierarchical optimization methodology for systems design.


Author(s):  
Adam B. Cooper ◽  
Panayotis Georgiopoulos ◽  
Hyung Min Kim ◽  
Panos Y. Papalambros

Engineering design decisions have more value and lasting impact if they are made in the context of the enterprise that produces the designed product. Setting targets that the designer must meet is often done at a high level within the enterprise, with inadequate consideration of the engineering design embodiment and associated cost. For complex artifacts produced by compartmentalized hierarchical enterprises, the challenge of linking the target setting rationale with the product instantiation is particularly demanding. The previously developed analytical target cascading process addresses the problem of translating supersystem design targets into design targets for all systems in a multilevel hierarchically structured product, so that local targets are consistent with each other and allow top targets to be met as closely as possible. In this article the process of rigorously setting the supersystem targets in an enterprise context is explored as a model-based approach termed “analytical target setting.” The effectiveness of linking analytical target setting and cascading is demonstrated in an automotive truck vehicle example.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yun Huang ◽  
Kaizhou Gao ◽  
Kai Wang ◽  
Haili Lv ◽  
Fan Gao

PurposeThe purpose of this paper is to adopt a three-stage cloud-based management system for optimizing greenhouse gases (GHG) emission and marketing decisions with supplier selection and product family design in a multi-level supply chain with multiple suppliers, one single manufacturer and multiple retailers.Design/methodology/approachThe manufacturer purchases optional components of a certain functionality from his alternative suppliers and customizes a set of platform products for retailers in different independent market segments. To tackle the studied problem, a hierarchical analytical target cascading (ATC) model is proposed, Jaya algorithm is applied and supplier selection and product family design are implemented in its encoding procedure.FindingsA case study is used to verify the effectiveness of the ATC model in solving the optimization problem and the corresponding algorithm. It has shown that the ATC model can not only obtain close optimization results as a central optimization method but also maintain the autonomous decision rights of different supply chain members.Originality/valueThis paper first develops a three-stage cloud-based management system to optimize GHG emission, marketing decisions, supplier selection and product family design in a multi-level supply chain. Then, the ATC model is proposed to obtain the close optimization results as central optimization method and also maintain the autonomous decision rights of different supply chain members.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amir Javidinejad

Concepts of precision engineering design process for optimal design where engineering sciences contribute in the successful good design are elaborated in this paper. Scientific theory, numerical methods and practicality are discussed in this paper. Factors necessary for a complete product or systems design are detailed and application of mathematical design optimization in producing a good design are shown. Many applicable engineering design examples are itemized to show relevancy of the optimal design theory to engineering design. Future trends of optimal design with respect to the 4th industrial revolution of digitization is presented. Paper sets to elaborate that most of the engineering and scientific design problems can be optimized to a good design based on many new/advanced optimization techniques. 


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 61
Author(s):  
Dominik Eisenhut ◽  
Nicolas Moebs ◽  
Evert Windels ◽  
Dominique Bergmann ◽  
Ingmar Geiß ◽  
...  

Recently, the new Green Deal policy initiative was presented by the European Union. The EU aims to achieve a sustainable future and be the first climate-neutral continent by 2050. It targets all of the continent’s industries, meaning aviation must contribute to these changes as well. By employing a systems engineering approach, this high-level task can be split into different levels to get from the vision to the relevant system or product itself. Part of this iterative process involves the aircraft requirements, which make the goals more achievable on the system level and allow validation of whether the designed systems fulfill these requirements. Within this work, the top-level aircraft requirements (TLARs) for a hybrid-electric regional aircraft for up to 50 passengers are presented. Apart from performance requirements, other requirements, like environmental ones, are also included. To check whether these requirements are fulfilled, different reference missions were defined which challenge various extremes within the requirements. Furthermore, figures of merit are established, providing a way of validating and comparing different aircraft designs. The modular structure of these aircraft designs ensures the possibility of evaluating different architectures and adapting these figures if necessary. Moreover, different criteria can be accounted for, or their calculation methods or weighting can be changed.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Francesco Ratto ◽  
Tiziana Fanni ◽  
Luigi Raffo ◽  
Carlo Sau

With the diffusion of cyber-physical systems and internet of things, adaptivity and low power consumption became of primary importance in digital systems design. Reconfigurable heterogeneous platforms seem to be one of the most suitable choices to cope with such challenging context. However, their development and power optimization are not trivial, especially considering hardware acceleration components. On the one hand high level synthesis could simplify the design of such kind of systems, but on the other hand it can limit the positive effects of the adopted power saving techniques. In this work, the mutual impact of different high level synthesis tools and the application of the well known clock gating strategy in the development of reconfigurable accelerators is studied. The aim is to optimize a clock gating application according to the chosen high level synthesis engine and target technology (Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA)). Different levels of application of clock gating are evaluated, including a novel multi level solution. Besides assessing the benefits and drawbacks of the clock gating application at different levels, hints for future design automation of low power reconfigurable accelerators through high level synthesis are also derived.


Sign in / Sign up

Export Citation Format

Share Document