scholarly journals The Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Colonization and Infection among Long-Term Acute Care Hospital Residents

2015 ◽  
Vol 37 (1) ◽  
pp. 55-60 ◽  
Author(s):  
John P Mills ◽  
Naasha J Talati ◽  
Kevin Alby ◽  
Jennifer H Han

OBJECTIVEAn improved understanding of carbapenem-resistant Klebsiella pneumoniae (CRKP) in long-term acute care hospitals (LTACHs) is needed. The objective of this study was to assess risk factors for colonization or infection with CRKP in LTACH residents.METHODSA case-control study was performed at a university-affiliated LTACH from 2008 to 2013. Cases were defined as all patients with clinical cultures positive for CRKP and controls were those with clinical cultures positive for carbapenem-susceptible K. pneumoniae (CSKP). A multivariate model was developed to identify risk factors for CRKP infection or colonization.RESULTSA total of 222 patients were identified with K. pneumoniae clinical cultures during the study period; 99 (45%) were case patients and 123 (55%) were control patients. Our multivariate analysis identified factors associated with a significant risk for CRKP colonization or infection: solid organ or stem cell transplantation (OR, 5.05; 95% CI, 1.23–20.8; P=.03), mechanical ventilation (OR, 2.56; 95% CI, 1.24–5.28; P=.01), fecal incontinence (OR, 5.78; 95% CI, 1.52–22.0; P=.01), and exposure in the prior 30 days to meropenem (OR, 3.55; 95% CI, 1.04–12.1; P=.04), vancomycin (OR, 2.94; 95% CI, 1.18–7.32; P=.02), and metronidazole (OR, 4.22; 95% CI, 1.28–14.0; P=.02).CONCLUSIONSRates of colonization and infection with CRKP were high in the LTACH setting, with nearly half of K. pneumoniae cultures demonstrating carbapenem resistance. Further studies are needed on interventions to limit the emergence of CRKP in LTACHs, including targeted surveillance screening of high-risk patients and effective antibiotic stewardship measures.Infect. Control Hosp. Epidemiol. 2015;37(1):55–60

2017 ◽  
Vol 38 (06) ◽  
pp. 670-677 ◽  
Author(s):  
Koh Okamoto ◽  
Michael Y. Lin ◽  
Manon Haverkate ◽  
Karen Lolans ◽  
Nicholas M. Moore ◽  
...  

OBJECTIVETo identify modifiable risk factors for acquisition ofKlebsiella pneumoniaecarbapenemase-producing Enterobacteriaceae (KPC) colonization among long-term acute-care hospital (LTACH) patients.DESIGNMulticenter, matched case-control study.SETTINGFour LTACHs in Chicago, Illinois.PARTICIPANTSEach case patient included in this study had a KPC-negative rectal surveillance culture on admission followed by a KPC-positive surveillance culture later in the hospital stay. Each matched control patient had a KPC-negative rectal surveillance culture on admission and no KPC isolated during the hospital stay.RESULTSFrom June 2012 to June 2013, 2,575 patients were admitted to 4 LTACHs; 217 of 2,144 KPC-negative patients (10.1%) acquired KPC. In total, 100 of these patients were selected at random and matched to 100 controls by LTACH facility, admission date, and censored length of stay. Acquisitions occurred a median of 16.5 days after admission. On multivariate analysis, we found that exposure to higher colonization pressure (OR, 1.02; 95% CI, 1.01–1.04;P=.002), exposure to a carbapenem (OR, 2.25; 95% CI, 1.06–4.77;P=.04), and higher Charlson comorbidity index (OR, 1.14; 95% CI, 1.01–1.29;P=.04) were independent risk factors for KPC acquisition; the odds of KPC acquisition increased by 2% for each 1% increase in colonization pressure.CONCLUSIONSHigher colonization pressure, exposure to carbapenems, and a higher Charlson comorbidity index independently increased the odds of KPC acquisition among LTACH patients. Reducing colonization pressure (through separation of KPC-positive patients from KPC-negative patients using strict cohorts or private rooms) and reducing carbapenem exposure may prevent KPC cross transmission in this high-risk patient population.Infect Control Hosp Epidemiol2017;38:670–677


2014 ◽  
Vol 35 (4) ◽  
pp. 434-436 ◽  
Author(s):  
Larissa M. Pisney ◽  
M. A. Barron ◽  
E. Kassner ◽  
D. Havens ◽  
N. E. Madinger

We describe the results of carbapenem-resistant Enterobacteriaceae (CRE) screening as part of an outbreak investigation of New Delhi metallo-β-lactamase–producing CRE at a tertiary care university teaching hospital. The manual method for CRE screening was useful for detecting patients with asymptomatic CRE carriage but was time-consuming and costly.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S14-S14
Author(s):  
Faye Rozwadowski ◽  
Jarred McAteer ◽  
Nancy A Chow ◽  
Kimberly Skrobarcek ◽  
Kaitlin Forsberg ◽  
...  

Abstract Background Candida auris can be transmitted in healthcare settings, and patients can become asymptomatically colonized, increasing risk for invasive infection and transmission. We investigated an ongoing C. auris outbreak at a 30-bed long-term acute care hospital to identify colonization for C. auris prevalence and risk factors. Methods During February–June 2017, we conducted point prevalence surveys every 2 weeks among admitted patients. We abstracted clinical information from medical records and collected axillary and groin swabs. Swabs were tested for C. auris. Data were analyzed to identify risk factors for colonization with C. auris by evaluating differences between colonized and noncolonized patients. Results All 101 hospitalized patients were surveyed, and 33 (33%) were colonized with C. auris. Prevalence of colonization ranged from 8% to 38%; incidence ranged from 5% to 20% (figure). Among colonized patients with available data, 19/27 (70%) had a tracheostomy, 20/31 (65%) had gastrostomy tubes, 24/33 (73%) ventilator use, and 12/27 (44%) had hemodialysis. Also, 31/33 (94%) had antibiotics and 13/33 (34%) antifungals during hospitalization. BMI for colonized patients (mean = 30.3, standard deviation (SD) = 10) was higher than for noncolonized patients (mean = 26.5, SD = 7.9); t = −2.1; P = 0.04). Odds of colonization were higher among Black patients (33%) vs. White patients (16%) (odds ratio [OR] 3.5; 95% confidence interval [CI] 1.3–9.8), and those colonized with other multidrug-resistant organism (MDRO) (72%) vs. noncolonized (44%) (OR 3.2; CI 1.3–8.0). Odds of death were higher among colonized patients (OR 4.6; CI 1.6—13.6). Conclusion Patients in long-term acute care facilities and having high prevalences of MDROs might be at risk for C. auris. Such patients with these risk factors could be targeted for enhanced surveillance to facilitate early detection of C. auris. Infection control measures to reduce MDROs’ spread, including hand hygiene, contact precautions, and judicious use of antimicrobials, could prevent further C. auris transmission. Acknowledgements The authors thank Janet Glowicz and Kathleen Ross. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 41 (10) ◽  
pp. 1162-1168
Author(s):  
Shawn E. Hawken ◽  
Mary K. Hayden ◽  
Karen Lolans ◽  
Rachel D. Yelin ◽  
Robert A. Weinstein ◽  
...  

AbstractObjective:Cohorting patients who are colonized or infected with multidrug-resistant organisms (MDROs) protects uncolonized patients from acquiring MDROs in healthcare settings. The potential for cross transmission within the cohort and the possibility of colonized patients acquiring secondary isolates with additional antibiotic resistance traits is often neglected. We searched for evidence of cross transmission of KPC+ Klebsiella pneumoniae (KPC-Kp) colonization among cohorted patients in a long-term acute-care hospital (LTACH), and we evaluated the impact of secondary acquisitions on resistance potential.Design:Genomic epidemiological investigation.Setting:A high-prevalence LTACH during a bundled intervention that included cohorting KPC-Kp–positive patients.Methods:Whole-genome sequencing (WGS) and location data were analyzed to identify potential cases of cross transmission between cohorted patients.Results:Secondary KPC-Kp isolates from 19 of 28 admission-positive patients were more closely related to another patient’s isolate than to their own admission isolate. Of these 19 cases, 14 showed strong genomic evidence for cross transmission (<10 single nucleotide variants or SNVs), and most of these patients occupied shared cohort floors (12 patients) or rooms (4 patients) at the same time. Of the 14 patients with strong genomic evidence of acquisition, 12 acquired antibiotic resistance genes not found in their primary isolates.Conclusions:Acquisition of secondary KPC-Kp isolates carrying distinct antibiotic resistance genes was detected in nearly half of cohorted patients. These results highlight the importance of healthcare provider adherence to infection prevention protocols within cohort locations, and they indicate the need for future studies to assess whether multiple-strain acquisition increases risk of adverse patient outcomes.


2008 ◽  
Vol 29 (7) ◽  
pp. 600-606 ◽  
Author(s):  
Christine Moore ◽  
Jastej Dhaliwal ◽  
Agnes Tong ◽  
Sarah Eden ◽  
Cindi Wigston ◽  
...  

Objective.To identify risk factors for acquisition of methicillin-resistant Staphylococcus aureus (MRSA) in patients exposed to an MRSA-colonized roommate.Design.Retrospective cohort study.Setting.A 472-bed acute-care teaching hospital in Toronto, Canada.Patients.Inpatients who shared a room between 1996 and 2004 with a patient who had unrecognized MRSA colonization.Methods.Exposed roommates were identified from infection-control logs and from results of screening for MRSA in the microbiology database. Completed follow-up was defined as completion of at least 2 sets of screening cultures (swab samples from the nares, the rectum, and skin lesions), with at least 1 set of samples obtained 7–10 days after the last exposure. Chart reviews were performed to compare those who did and did not become colonized with MRSA.Results.Of 326 roommates, 198 (61.7%) had completed follow-up, and 25 (12.6%) acquired MRSA by day 7–10 after exposure was recognized, all with strains indistinguishable by pulsed-field gel electrophoresis from those of their roommate. Two (2%) of 101 patients were not colonized at day 7–10 but, with subsequent testing, were identified as being colonized with the same strain as their roommate (one at day 16 and one at day 18 after exposure). A history of alcohol abuse (odds ratio [OR], 9.8 [95% confidence limits {CLs}, 1.8, 53]), exposure to a patient with nosocomially acquired MRSA (OR, 20 [95% CLs, 2.4,171]), increasing care dependency (OR per activity of daily living, 1.7 [95% CLs, 1.1, 2.7]), and having received levofloxacin (OR, 3.6 [95% CLs, 1.1,12]) were associated with MRSA acquisition.Conclusions.Roommates of patients with MRSA are at significant risk for becoming colonized. Further study is needed of the impact of hospital antimicrobial formulary decisions on the risk of acquisition of MRSA.


2009 ◽  
Vol 64 (5) ◽  
pp. 1102-1110 ◽  
Author(s):  
A. Endimiani ◽  
J. M. DePasquale ◽  
S. Forero ◽  
F. Perez ◽  
A. M. Hujer ◽  
...  

2014 ◽  
Vol 42 (6) ◽  
pp. S30-S31 ◽  
Author(s):  
Robert Kelley ◽  
Timothy Wiemken ◽  
Daniel Curran ◽  
Mohammad Khan ◽  
Emily Pacholski ◽  
...  

2014 ◽  
Vol 35 (4) ◽  
pp. 440-442 ◽  
Author(s):  
Michael Y. Lin ◽  
Karen Lolans ◽  
Donald W. Blom ◽  
Rosie D. Lyles ◽  
Shayna Weiner ◽  
...  

We evaluated the effectiveness of daily chlorhexidine gluconate (CHG) bathing in decreasing skin carriage of Klebsiella pneumoniae carbapenemase–producing Enterobacteriaceae (KPC) among long-term acute care hospital patients. CHG bathing reduced KPC skin colonization, particularly when CHG skin concentrations greater than or equal to 128 μg/mL were achieved.


Sign in / Sign up

Export Citation Format

Share Document