The mechanism of a splash on a dry solid surface

2011 ◽  
Vol 690 ◽  
pp. 148-172 ◽  
Author(s):  
Shreyas Mandre ◽  
Michael P. Brenner

AbstractFrom rain storms to ink jet printing, it is ubiquitous that a high-speed liquid droplet creates a splash when it impacts on a dry solid surface. Yet, the fluid mechanical mechanism causing this splash is unknown. About fifty years ago it was discovered that corona splashes are preceded by the ejection of a thin fluid sheet very near the vicinity of the contact point. Here we present a first-principles description of the mechanism for sheet formation, the initial stages of which occur before the droplet physically contacts the surface. We predict precisely when sheet formation occurs on a smooth surface as a function of experimental parameters, along with conditions on the roughness and other parameters for the validity of the predictions. The process of sheet formation provides a semi-quantitative framework for studying the subsequent events and the influence of liquid viscosity, gas pressure and surface roughness. The conclusions derived from this framework are in quantitative agreement with previous measurements of the splash threshold as a function of impact parameters (the size and velocity of the droplet) and in qualitative agreement with the dependence on physical properties (liquid viscosity, surface tension, ambient gas pressure, etc.) Our analysis predicts an as yet unobserved series of events within micrometres of the impact point and microseconds of the splash.

Soft Matter ◽  
2021 ◽  
Author(s):  
Siqi Zheng ◽  
Sam Dillavou ◽  
John M. Kolinski

When a soft elastic body impacts upon a smooth solid surface, the intervening air fails to drain, deforming the impactor. High-speed imaging with the VFT reveal rich dynamics and sensitivity to the impactor's elastic properties and the impact velocity.


2018 ◽  
Vol 5 (12) ◽  
pp. 181101 ◽  
Author(s):  
Y. Tatekura ◽  
M. Watanabe ◽  
K. Kobayashi ◽  
T. Sanada

The prime objective of this study is to answer the question: How large is the pressure developed at the instant of a spherical liquid droplet impact on a solid surface? Engel first proposed that the maximum pressure rise generated by a spherical liquid droplet impact on a solid surface is different from the one-dimensional water-hammer pressure by a spherical shape factor (Engel 1955 J. Res. Natl Bur. Stand. 55 (5), 281–298). Many researchers have since proposed various factors to accurately predict the maximum pressure rise. We numerically found that the maximum pressure rise can be predicted by the combination of water-hammer theory and the shock relation; then, we analytically extended Engel’s elastic impact model, by realizing that the progression speed of the contact between the gas–liquid interface and the solid surface is much faster than the compression wavefront propagation speed at the instant of the impact. We successfully correct Engel’s theory so that it can accurately provide the maximum pressure rise at the instant of impact between a spherical liquid droplet and solid surface, that is, no shape factor appears in the theory.


Author(s):  
Kalpak P. Gatne ◽  
Milind A. Jog ◽  
Raj M. Manglik

A study of the normal impact of liquid droplets on a dry horizontal substrate is presented in this paper. The impact dynamics, spreading and recoil behavior are captured using a high-speed digital video camera at 2000 frames per second. A digital image processing software was used to determine the drop spread and height of the liquid on the surface from each frame. To ascertain the effects of liquid viscosity and surface tension, experiments were conducted with four liquids (water, ethanol, propylene glycol and glycerin) that have vastly different fluid properties. Three different Weber numbers (20, 40, and 80) were considered by altering the height from which the drop is released. The high-speed photographs of impact, spreading and recoil are shown and the temporal variations of dimensionless drop spread and height are provided in the paper. The results show that changes in liquid viscosity and surface tension significantly affect the spreading and recoil behavior. For a fixed Weber number, lower surface tension promotes greater spreading and higher viscosity dampens spreading and recoil. Using a simple scale analysis of energy balance, it was found that the maximum spread factor varies as Re1/5 when liquid viscosity is high and viscous effects govern the spreading behavior.


1994 ◽  
Vol 116 (2) ◽  
pp. 345-348 ◽  
Author(s):  
H. H. Shi ◽  
J. E. Field ◽  
C. S. J. Pickles

The mechanics of impact by a high-speed liquid jet onto a solid surface covered by a liquid layer is described. After the liquid jet contacts the liquid layer, a shock wave is generated, which moves toward the solid surface. The shock wave is followed by the liquid jet penetrating through the layer. The influence of the liquid layer on the side jetting and stress waves is studied. Damage sites on soda-lime glass, PMMA (polymethylmethacrylate) and aluminium show the role of shear failure and cracking and provide evidence for analyzing the impact pressure on the wetted solids and the spatial pressure distribution. The liquid layer reduces the high edge impact pressures, which occur on dry targets. On wetted targets, the pressure is distributed more uniformly. Despite the cushioning effect of liquid layers, in some cases, a liquid can enhance material damage during impact due to penetration and stressing of surface cracks.


2018 ◽  
Vol 197 ◽  
pp. 08016
Author(s):  
Rafil Arizona ◽  
Teguh Wibowo ◽  
Indarto Indarto ◽  
Deendarlianto Deendarlianto

The impact between multiple droplets onto hot surface is an important process in a spray cooling. The present study was conducted to investigate the dynamics of multiple droplet impact under various surface tensions. Here, the ethylene glycol with compositions of 0%, 5%, and 15% was injected through a nozzle onto stainless steel surface as the multiple droplet. The solid surface was heated at the temperatures of 100 °C, 150 °C, and 200 °C. To observe the dynamics of multiple droplets, a high speed camera with the frame rate of 2000 fps was used. A technique of image processing was developed to determine the maximum droplet spreading ratio. As the result, the surface tension contributes significantly to maximum spreading ratio. As the droplet surface tension decreases, the maximum spreading ratio increases. The maximum spreading ratio appears when the percentage of the ethylene glycol is 15% at the temperature of 150°C. From the visual observation, it is shown that a slower emergence of secondary droplets (droplet splashing) is carried out under a lower surface tension. Hence, surface tension plays an important role on the behavior of emerging secondary droplets. Furthermore, results of the experiments are useful for the validation of available previous CFD models.


The object of the work has been to investigate experimentally the mechanisms of erosion in metals and alloys under drop impingement attack. For this purpose an apparatus of the wheel and jet type has been used to erode aluminium, copper, iron, cobalt and alloys of these metals. The various stages in the process from the first detectable microplastic deformation to the eventual pitting and removal of material from the surface have been investigated. In addition, experiments were carried out with the purpose of examining the effects of the normal impact pressure of a liquid on a surface in the absence of shear forces associated with liquid flow. This was achieved by propagating impact-generated compression waves through a liquid column in a filled and sealed cylinder onto a specimen surface inside the cylinder. With this arrangement the initial damage—small shallow depressions in the specimen surface— was identical with that produced under standard drop impact conditions in the wheel and jet apparatus. In either case the calculated values of the maximum impact pressure were lower than the average yield strength of each metal investigated. A complementary series of experiments was carried out in order to examine the erosive effects of liquid flow over the surface in the absence of high impact pressures. The technique used here involved a continuous high-speed water jet impinging against a solid surface at glancing incidence. This study showed that while flat well polished surfaces were apparently unaffected by the flow, lightly roughened surfaces or surfaces which contained the shallow impact depressions were severely eroded in regions adjacent to discontinuities. These various experiments suggest that the initial yielding which gives rise to the depression is associated with non-uniformity in the strength, structure and shape of the solid surface rather than with local variations in the impact pressure over the surface. The subsequent acceleration in the erosion rate is linked with the increased roughening of the surface and with an increase in the shear damage. When the surface becomes very rough and pitted, the impinging drop is deflected into less damaging streams by surface projections. This effect would account for the eventual decrease observed in the erosion rate. Further studies of the structure of the eroded surfaces have shown that the fractures have a number of features which are characteristic of metal fatigue failure. The connexion between erosion and fatigue is illustrated by similarities between the endurance curves for erosion and for the same metal in a standard fatigue test. As in the case of fatigue failure, strain energy to fracture appears to be one of the most important mechanical properties determining the erosive behaviour of a ductile metal.


2000 ◽  
Author(s):  
Hitoshi Fujimoto ◽  
Tomoyuki Ogino ◽  
Osamu Takahashi ◽  
Hirohiko Takuda ◽  
Natsuo Hatta

Abstract The collision of liquid droplets with a solid has been studied experimentally. The time evolution of the liquid/solid contact area as well as the shape of droplets has been observed by means of a flash-photographic method using two video cameras. It has been found that some air between the solid surface and the incoming droplet is entrapped at the moment of impact. In the case where the solid temperature is high (= 450 °C), numerous vapor bubbles appear at the liquid/solid interface after the collision. The bubble formation due to the entrapment of air has been examined for various experimental conditions. Water, and ethanol are used as test liquid. The droplet diameter is 2.4 mm for water and 1.9 mm for ethanol. The impact velocity varies from 0.8 to 3.1 m/s. The entrapment of air has been observed for both liquids under all conditions in the present study.


2021 ◽  
Vol 926 ◽  
Author(s):  
Mohammad Khavari ◽  
Tuan Tran

During the impact of a liquid droplet on a sufficiently heated surface, bubble nucleation reduces the contact area between the liquid and the solid surface. Using high-speed imaging combined with total internal reflection, we measure and report how the contact area decreases with time for a wide range of surface temperatures and impact velocities. We also reveal how formation of the observed fingering patterns contributes to a substantial increase in the total length of the contact line surrounding the contact area.


Author(s):  
Yongqiang Han ◽  
Yonghui Xie ◽  
Di Zhang

In this study an axisymmetric model is set up to study the impact of a spherical water droplet with a planar deformable solid surface using the Lagrange-Euler coupling method which is based on a penalty formulation. The diameter and velocity of the droplet are 0.4 mm and 500 m/s respectively, while the solid is a kind of steam turbine blade material. The generated pressure distribution in the droplet and its variation with time, the formation of lateral jet, the deformation and stress distribution in the solid are obtained and investigated. It is shown that the compressibility of the droplet and the solid plays a significant role during the impact. The water-hammer pressure and the maximum contact edge pressure are calculated and in good agreement with the existing theoretical predictions. The calculated contact radius for shock departure is larger than that of the conventional theoretical prediction, which is analyzed and attributable to the radial motion of the liquid in the compressed region. The formation of the high-speed lateral jet is calculated and the time for the observable jetting is much later than that of the shock departure. This delay is discussed and the reason needs more research. The pressure of the contact edge region remains highest even after a considerable time of shock departure and lateral jetting. In the mean time, a saucer-shaped depression is generated in the center of the impact. The stress waves in solid move faster even before shock departure in the liquid. This causes disturbance of the solid surface before the high-speed lateral jetting and provides site for the scouring action of it, and subsequently may cause material damage and erosion.


Sign in / Sign up

Export Citation Format

Share Document