Stability of non-parabolic flow in a flexible tube

1999 ◽  
Vol 395 ◽  
pp. 211-236 ◽  
Author(s):  
V. SHANKAR ◽  
V. KUMARAN

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such ‘non-parabolic’ flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.

1977 ◽  
Vol 79 (2) ◽  
pp. 337-359 ◽  
Author(s):  
K. N. Helland ◽  
C. W. Van Atta ◽  
G. R. Stegen

The spectral energy transfer of turbulent velocity fields has been examined over a wide range of Reynolds numbers by experimental and empirical methods. Measurements in a high Reynolds number grid flow were used to calculate the energy transfer by the direct Fourier-transform method of Yeh & Van Atta. Measurements in a free jet were used to calculate energy transfer for a still higher Reynolds number. An empirical energy spectrum was used in conjunction with a local self-preservation approximation to estimate the energy transfer at Reynolds numbers beyond presently achievable experimental conditions.Second-order spectra of the grid measurements are in excellent agreement with local isotropy down to low wavenumbers. For the first time, one-dimensional third-order spectra were used to test for local isotropy, and modest agreement with the theoretical conditions was observed over the range of wavenumbers which appear isotropic according to second-order criteria. Three-dimensional forms of the measured spectra were calculated, and the directly measured energy transfer was compared with the indirectly measured transfer using a local self-preservation model for energy decay. The good agreement between the direct and indirect measurements of energy transfer provides additional support for both the assumption of local isotropy and the assumption of self-preservation in high Reynolds number grid turbulence.An empirical spectrum was constructed from analytical spectral forms of von Kármán and Pao and used to extrapolate energy transfer measurements at lower Reynolds number to Rλ = 105 with the assumption of local self preservation. The transfer spectrum at this Reynolds number has no wavenumber region of zero net spectral transfer despite three decades of $k^{-\frac{5}{3}}$. behaviour in the empirical energy spectrum. A criterion for the inertial subrange suggested by Lumley applied to the empirical transfer spectrum is in good agreement with the $k^{-\frac{5}{3}}$ range of the empirical energy spectrum.


1981 ◽  
Vol 48 (1) ◽  
pp. 192-194 ◽  
Author(s):  
S. C. Gupta ◽  
V. K. Garg

It is found that even a 5 percent change in the velocity profile produces a 100 percent change in the critical Reynolds number for the stability of developing flow very close to the entrance of a two-dimensional channel.


1977 ◽  
Vol 28 (4) ◽  
pp. 259-264 ◽  
Author(s):  
J L Stollery ◽  
A V Murthy

SummaryThe paper suggests a simple method of generating intermittent reservoir conditions for an intermittent, cryogenic wind tunnel. Approximate performance estimates are given and it is recommended that further studies be made because this type of tunnel could be valuable in increasing the opportunities for research at high Reynolds numbers.


2019 ◽  
Vol 11 (03) ◽  
pp. 1950028 ◽  
Author(s):  
N. M. Sangtani Lakhwani ◽  
F. C. G. A. Nicolleau ◽  
W. Brevis

Lattice Boltzmann Method (LBM) simulations for turbulent flows over fractal and non-fractal obstacles are presented. The wake hydrodynamics are compared and discussed in terms of flow relaxation, Strouhal numbers and wake length for different Reynolds numbers. Three obstacle topologies are studied, Solid (SS), Porous Regular (PR) and Porous Fractal (FR). In particular, we observe that the oscillation present in the case of the solid square can be annihilated or only pushed downstream depending on the topology of the porous obstacle. The LBM is implemented over a range of four Reynolds numbers from 12,352 to 49,410. The suitability of LBM for these high Reynolds number cases is studied. Its results are compared to available experimental data and published literature. Compelling agreements between all three tested obstacles show a significant validation of LBM as a tool to investigate high Reynolds number flows in complex geometries. This is particularly important as the LBM method is much less time consuming than a classical Navier–Stokes equation-based computing method and high Reynolds numbers need to be achieved with enough details (i.e., resolution) to predict for example canopy flows.


2015 ◽  
Vol 2015 (0) ◽  
pp. _1502-1_-_1502-2_
Author(s):  
Yuki WADA ◽  
Noriyuki FURUICHI ◽  
Yoshiya TERAO ◽  
Yoshiyuki TSUJI

2015 ◽  
Vol 779 ◽  
pp. 371-389 ◽  
Author(s):  
M. Vallikivi ◽  
M. Hultmark ◽  
A. J. Smits

Measurements are presented in zero-pressure-gradient, flat-plate, turbulent boundary layers for Reynolds numbers ranging from $\mathit{Re}_{{\it\tau}}=2600$ to $\mathit{Re}_{{\it\tau}}=72\,500$ ($\mathit{Re}_{{\it\theta}}=8400{-}235\,000$). The wind tunnel facility uses pressurized air as the working fluid, and in combination with MEMS-based sensors to resolve the small scales of motion allows for a unique investigation of boundary layer flow at very high Reynolds numbers. The data include mean velocities, streamwise turbulence variances, and moments up to 10th order. The results are compared to previously reported high Reynolds number pipe flow data. For $\mathit{Re}_{{\it\tau}}\geqslant 20\,000$, both flows display a logarithmic region in the profiles of the mean velocity and all even moments, suggesting the emergence of a universal behaviour in the statistics at these high Reynolds numbers.


2011 ◽  
Vol 684 ◽  
pp. 284-315 ◽  
Author(s):  
Andrew G. Walton

AbstractThe high-Reynolds-number stability of unsteady pipe flow to axisymmetric disturbances is studied using asymptotic analysis. It is shown that as the disturbance amplitude is increased, nonlinear effects first become significant within the critical layer, which moves away from the pipe wall as a result. It is found that the flow stabilizes once the basic profile has become sufficiently fully developed. By tracing the nonlinear neutral curve back to earlier times, it is found that in addition to the wall mode, which arises from a classical upper branch linear stability analysis, there also exists a nonlinear neutral centre mode, governed primarily by inviscid dynamics. The centre mode problem is solved numerically and the results show the existence of a concentrated region of vorticity centred on or close to the pipe axis and propagating downstream at almost the maximum fluid velocity. The connection between this structure and the puffs and slugs of vorticity observed in experiments is discussed.


2015 ◽  
Vol 81 (826) ◽  
pp. 15-00091-15-00091 ◽  
Author(s):  
Yuki WADA ◽  
Noriyuki FURUICHII ◽  
Yoshiya TERAO ◽  
Yoshiyuki TSUJI

1998 ◽  
Vol 357 ◽  
pp. 123-140 ◽  
Author(s):  
V. KUMARAN

The stability of the flow of a fluid in a flexible tube is analysed over a range of Reynolds numbers 1<Re<104 using a linear stability analysis. The system consists of a Hagen–Poiseuille flow of a Newtonian fluid of density ρ, viscosity η and maximum velocity V through a tube of radius R which is surrounded by an incompressible viscoelastic solid of density ρ, shear modulus G and viscosity ηs in the region R<r<HR. In the intermediate Reynolds number regime, the stability depends on the Reynolds number Re=ρVR/η, a dimensionless parameter [sum ]=ρGR2/η2, the ratio of viscosities ηr= ηs/η, the ratio of radii H and the wavenumber of the perturbations k. The neutral stability curves are obtained by numerical continuation using the analytical solutions obtained in the zero Reynolds number limit as the starting guess. For ηr=0, the flow becomes unstable when the Reynolds number exceeds a critical value Rec, and the critical Reynolds number increases with an increase in [sum ]. In the limit of high Reynolds number, it is found that Rec∝[sum ]α, where α varies between 0.7 and 0.75 for H between 1.1 and 10.0. An analysis of the flow structure indicates that the viscous stresses are confined to a boundary layer of thickness Re−1/3 for Re[Gt ]1, and the shear stress, scaled by ηV/R, increases as Re1/3. However, no simple scaling law is observed for the normal stress even at 103<Re<105, and consequently the critical Reynolds number also does not follow a simple scaling relation. The effect of variation of ηr on the stability is analysed, and it is found that a variation in ηr could qualitatively alter the stability characteristics. At relatively low values of [sum ] (about 102), the system could become unstable at all values of ηr, but at relatively high values of [sum ] (greater than about 104), an instability is observed only when the viscosity ratio is below a maximum value η*rm.


Sign in / Sign up

Export Citation Format

Share Document