scholarly journals Spectral non-locality, absolute equilibria and Kraichnan–Leith–Batchelor phenomenology in two-dimensional turbulent energy cascades

2013 ◽  
Vol 725 ◽  
pp. 332-371 ◽  
Author(s):  
B. H. Burgess ◽  
T. G. Shepherd

AbstractWe study the degree to which Kraichnan–Leith–Batchelor (KLB) phenomenology describes two-dimensional energy cascades in $\alpha $ turbulence, governed by $\partial \theta / \partial t+ J(\psi , \theta )= \nu {\nabla }^{2} \theta + f$, where $\theta = {(- \Delta )}^{\alpha / 2} \psi $ is generalized vorticity, and $\hat {\psi } (\boldsymbol{k})= {k}^{- \alpha } \hat {\theta } (\boldsymbol{k})$ in Fourier space. These models differ in spectral non-locality, and include surface quasigeostrophic flow ($\alpha = 1$), regular two-dimensional flow ($\alpha = 2$) and rotating shallow flow ($\alpha = 3$), which is the isotropic limit of a mantle convection model. We re-examine arguments for dual inverse energy and direct enstrophy cascades, including Fjørtoft analysis, which we extend to general $\alpha $, and point out their limitations. Using an $\alpha $-dependent eddy-damped quasinormal Markovian (EDQNM) closure, we seek self-similar inertial range solutions and study their characteristics. Our present focus is not on coherent structures, which the EDQNM filters out, but on any self-similar and approximately Gaussian turbulent component that may exist in the flow and be described by KLB phenomenology. For this, the EDQNM is an appropriate tool. Non-local triads contribute increasingly to the energy flux as $\alpha $ increases. More importantly, the energy cascade is downscale in the self-similar inertial range for $2. 5\lt \alpha \lt 10$. At $\alpha = 2. 5$ and $\alpha = 10$, the KLB spectra correspond, respectively, to enstrophy and energy equipartition, and the triad energy transfers and flux vanish identically. Eddy turnover time and strain rate arguments suggest the inverse energy cascade should obey KLB phenomenology and be self-similar for $\alpha \lt 4$. However, downscale energy flux in the EDQNM self-similar inertial range for $\alpha \gt 2. 5$ leads us to predict that any inverse cascade for $\alpha \geq 2. 5$ will not exhibit KLB phenomenology, and specifically the KLB energy spectrum. Numerical simulations confirm this: the inverse cascade energy spectrum for $\alpha \geq 2. 5$ is significantly steeper than the KLB prediction, while for $\alpha \lt 2. 5$ we obtain the KLB spectrum.

2012 ◽  
Vol 703 ◽  
pp. 238-254 ◽  
Author(s):  
Luke A. K. Blackbourn ◽  
Chuong V. Tran

AbstractWe study two-dimensional magnetohydrodynamic turbulence, with an emphasis on its energetics and inertial-range scaling laws. A detailed spectral analysis shows that dynamo triads (those converting kinetic into magnetic energy) are associated with a direct magnetic energy flux while anti-dynamo triads (those converting magnetic into kinetic energy) are associated with an inverse magnetic energy flux. As both dynamo and anti-dynamo interacting triads are integral parts of the direct energy transfer, the anti-dynamo inverse flux partially neutralizes the dynamo direct flux, arguably resulting in relatively weak direct energy transfer and giving rise to dynamo saturation. This result is consistent with a qualitative prediction of energy transfer reduction due to Alfvén wave effects by the Iroshnikov–Kraichnan theory (which was originally formulated for magnetohydrodynamic turbulence in three dimensions). We numerically confirm the correlation between dynamo action and direct magnetic energy flux and investigate the applicability of quantitative aspects of the Iroshnikov–Kraichnan theory to the present case, particularly its predictions of energy equipartition and ${k}^{\ensuremath{-} 3/ 2} $ spectra in the energy inertial range. It is found that for turbulence satisfying the Kraichnan condition of magnetic energy at large scales exceeding total energy in the inertial range, the kinetic energy spectrum, which is significantly shallower than ${k}^{\ensuremath{-} 3/ 2} $, is shallower than its magnetic counterpart. This result suggests no energy equipartition. The total energy spectrum appears to depend on the energy composition of the turbulence but is clearly shallower than ${k}^{\ensuremath{-} 3/ 2} $ for $r\approx 2$, even at moderate resolutions. Here $r\approx 2$ is the magnetic-to-kinetic energy ratio during the stage when the turbulence can be considered fully developed. The implication of the present findings is discussed in conjunction with further numerical results on the dependence of the energy dissipation rate on resolution.


2009 ◽  
Vol 23 (03) ◽  
pp. 513-516 ◽  
Author(s):  
HAO ZHU ◽  
KEMING CHENG

In this article, we investigate the energy cascade of three-dimensional turbulent flows, in which the break-up process of eddy is quasi-self-similar. Mathematically this kind of turbulence with quasi-self-similar structure eddies can be regarded as cookie-cutter system, and can be generated by self-similar iterated function system (IFS) with added nonlinear disturbance. Using Bowen's result, we can calculate the exponent of dissipative correlated function, dissipated velocity, energy spectrum supported on cookie-cutter system. The present results show that the β-model is feasible for this kind of quasi-self-similar turbulence.


2005 ◽  
Vol 35 (9) ◽  
pp. 1650-1666 ◽  
Author(s):  
Robert B. Scott ◽  
Faming Wang

Abstract Sea surface height measurements from satellites reveal the turbulent properties of the South Pacific Ocean surface geostrophic circulation, both supporting and challenging different aspects of geostrophic turbulence theory. A near-universal shape of the spectral kinetic energy flux is found and provides direct evidence of a source of kinetic energy near to or smaller than the deformation radius, consistent with linear instability theory. The spectral kinetic energy flux also reveals a net inverse cascade (i.e., a cascade to larger spatial scale), consistent with two-dimensional turbulence phenomenology. However, stratified geostrophic turbulence theory predicts an inverse cascade for the barotropic mode only; energy in the large-scale baroclinic modes undergoes a direct cascade toward the first-mode deformation scale. Thus if the surface geostrophic flow is predominately the first baroclinic mode, as expected for oceanic stratification profiles, then the observed inverse cascade contradicts geostrophic turbulence theory. The latter interpretation is argued for. Furthermore, and consistent with this interpretation, the inverse cascade arrest scale does not follow the Rhines arrest scale, as one would expect for the barotropic mode. A tentative revision of theory is proposed that would resolve the conflicts; however, further observations and idealized modeling experiments are needed to confirm, or refute, the revision. It is noted that no inertial range was found for the inverse cascade range of the spectrum, implying inertial range scaling, such as the established K−5/3 slope in the spectral kinetic energy density plot, is not applicable to the surface geostrophic flow.


2007 ◽  
Vol 574 ◽  
pp. 429-448 ◽  
Author(s):  
ARMANDO BABIANO ◽  
ANTONELLO PROVENZALE

We study numerically the scale-to-scale transfers of enstrophy and passive-tracer variance in two-dimensional turbulence, and show that these transfers display significant differences in the inertial range of the enstrophy cascade. While passive-tracer variance always cascades towards small scales, enstrophy is characterized by the simultaneous presence of a direct cascade in hyperbolic regions and of an inverse cascade in elliptic regions. The inverse enstrophy cascade is particularly intense in clusters of small-scales elliptic patches and vorticity filaments in the turbulent background, and it is associated with gradient-decreasing processes. The inversion of the enstrophy cascade, already noticed by Ohkitani (Phys. Fluids A, vol. 3, 1991, p. 1598), appears to be the main difference between vorticity and passive-tracer dynamics in incompressible two-dimensional turbulence.


2010 ◽  
Vol 668 ◽  
pp. 202-222 ◽  
Author(s):  
M. M. FARAZMAND ◽  
N. K.-R. KEVLAHAN ◽  
B. PROTAS

The Kraichnan–Leith–Batchelor (KLB) theory of statistically stationary forced homogeneous isotropic two-dimensional turbulence predicts the existence of two inertial ranges: an energy inertial range with an energy spectrum scaling of k−5/3, and an enstrophy inertial range with an energy spectrum scaling of k−3. However, unlike the analogous Kolmogorov theory for three-dimensional turbulence, the scaling of the enstrophy range in the two-dimensional turbulence seems to be Reynolds-number-dependent: numerical simulations have shown that as Reynolds number tends to infinity, the enstrophy range of the energy spectrum converges to the KLB prediction, i.e. E ~ k−3. The present paper uses a novel optimal control approach to find a forcing that does produce the KLB scaling of the energy spectrum in a moderate Reynolds number flow. We show that the time–space structure of the forcing can significantly alter the scaling of the energy spectrum over inertial ranges. A careful analysis of the optimal forcing suggests that it is unlikely to be realized in nature, or by a simple numerical model.


2021 ◽  
Vol 933 ◽  
Author(s):  
Adrian van Kan ◽  
Alexandros Alexakis

We study forced, rapidly rotating and stably stratified turbulence in an elongated domain using an asymptotic expansion at simultaneously low Rossby number $\mathit {Ro}\ll 1$ and large domain height compared with the energy injection scale, $h=H/\ell _{in}\gg 1$ . The resulting equations depend on the parameter $\lambda =(h \mathit {Ro} )^{-1}$ and the Froude number $\mathit {Fr}$ . An extensive set of direct numerical simulations (DNS) is performed to explore the parameter space $(\lambda,\mathit {Fr})$ . We show that a forward energy cascade occurs in one region of this space, and a split energy cascade outside it. At weak stratification (large $\mathit {Fr}$ ), an inverse cascade is observed for sufficiently large $\lambda$ . At strong stratification (small $\mathit {Fr}$ ) the flow becomes approximately hydrostatic and an inverse cascade is always observed. For both weak and strong stratification, we present theoretical arguments supporting the observed energy cascade phenomenology. Our results shed light on an asymptotic region in the phase diagram of rotating and stratified turbulence, which is difficult to attain by brute-force DNS.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950218
Author(s):  
Leonardo Campanelli

We study the scaling properties of two-dimensional turbulence using dimensional analysis. In particular, we consider the energy spectrum both at large and small scales and in the “inertial ranges” for the cases of freely decaying and forced turbulence. We also investigate the properties of an “energy condensate” at large scales in spatially finite systems. Finally, an analysis of a possible inverse cascade in freely decaying turbulence is presented.


1999 ◽  
Vol 388 ◽  
pp. 259-288 ◽  
Author(s):  
ERIK LINDBORG

The statistical features of turbulence can be studied either through spectral quantities, such as the kinetic energy spectrum, or through structure functions, which are statistical moments of the difference between velocities at two points separated by a variable distance. In this paper structure function relations for two-dimensional turbulence are derived and compared with calculations based on wind data from 5754 airplane flights, reported in the MOZAIC data set. For the third-order structure function two relations are derived, showing that this function is generally positive in the two-dimensional case, contrary to the three-dimensional case. In the energy inertial range the third-order structure function grows linearly with separation distance and in the enstrophy inertial range it grows cubically with separation distance. A Fourier analysis shows that the linear growth is a reflection of a constant negative spectral energy flux, and the cubic growth is a reflection of a constant positive spectral enstrophy flux. Various relations between second-order structure functions and spectral quantities are also derived. The measured second-order structure functions can be divided into two different types of terms, one of the form r2/3, giving a k−5/3-range and another, including a logarithmic dependence, giving a k−3-range in the energy spectrum. The structure functions agree better with the two-dimensional isotropic relation for larger separations than for smaller separations. The flatness factor is found to grow very fast for separations of the order of some kilometres. The third-order structure function is accurately measured in the interval [30, 300] km and is found to be positive. The average enstrophy flux is measured as Πω≈1.8×10−13 s−3 and the constant in the k−3-law is measured as [Kscr ]≈0.19. It is argued that the k−3-range can be explained by two-dimensional turbulence and can be interpreted as an enstrophy inertial range, while the k−5/3-range can probably not be explained by two-dimensional turbulence and should not be interpreted as a two-dimensional energy inertial range.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Keiichi Ishiko ◽  
Naofumi Ohnishi ◽  
Kazuyuki Ueno ◽  
Keisuke Sawada

For the aim of computing compressible turbulent flowfield involving shock waves, an implicit large eddy simulation (LES) code has been developed based on the idea of monotonically integrated LES. We employ the weighted compact nonlinear scheme (WCNS) not only for capturing possible shock waves but also for attaining highly accurate resolution required for implicit LES. In order to show that WCNS is a proper choice for implicit LES, a two-dimensional homogeneous turbulence is first obtained by solving the Navier–Stokes equations for incompressible flow. We compare the inertial range in the computed energy spectrum with that obtained by the direct numerical simulation (DNS) and also those given by the different LES approaches. We then obtain the same homogeneous turbulence by solving the equations for compressible flow. It is shown that the present implicit LES can reproduce the inertial range in the energy spectrum given by DNS fairly well. A truncation of energy spectrum occurs naturally at high wavenumber limit indicating that dissipative effect is included properly in the present approach. A linear stability analysis for WCNS indicates that the third order interpolation determined in the upwind stencil introduces a large amount of numerical viscosity to stabilize the scheme, but the same interpolation makes the scheme weakly unstable for waves satisfying kΔx≈1. This weak instability results in a slight increase in the energy spectrum at high wavenumber limit. In the computed result of homogeneous turbulence, a fair correlation is shown to exist between the locations where the magnitude of ∇×ω becomes large and where the weighted combination of the third order interpolations in WCNS deviates from the optimum ratio to increase the amount of numerical viscosity. Therefore, the numerical viscosity involved in WCNS becomes large only at the locations where the subgrid-scale viscosity can arise in ordinary LES. This suggests the reason why the present implicit LES code using WCNS can resolve turbulent flowfield reasonably well.


2009 ◽  
Vol 619 ◽  
pp. 1-44 ◽  
Author(s):  
Z. XIAO ◽  
M. WAN ◽  
S. CHEN ◽  
G. L. EYINK

We report an investigation of inverse energy cascade in steady-state two-dimensional turbulence by direct numerical simulation (DNS) of the two-dimensional Navier–Stokes equation, with small-scale forcing and large-scale damping. We employed several types of damping and dissipation mechanisms in simulations up to 20482 resolution. For all these simulations we obtained a wavenumber range for which the mean spectral energy flux is a negative constant and the energy spectrum scales as k−5/3, consistent with the predictions of Kraichnan (Phys. Fluids, vol. 439, 1967, p. 1417). To gain further insight, we investigated the energy cascade in physical space, employing a local energy flux defined by smooth filtering. We found that the inverse energy cascade is scale local, but that the strongly local contribution vanishes identically, as argued by Kraichnan (J. Fluid Mech., vol. 47, 1971, p. 525). The mean flux across a length scale ℓ was shown to be due mainly to interactions with modes two to eight times smaller. A major part of our investigation was devoted to identifying the physical mechanism of the two-dimensional inverse energy cascade. One popular idea is that inverse energy cascade proceeds via merger of like-sign vortices. We made a quantitative study employing a precise topological criterion of merger events. Our statistical analysis showed that vortex mergers play a negligible direct role in producing mean inverse energy flux in our simulations. Instead, we obtained with the help of other works considerable evidence in favour of a ‘vortex thinning’ mechanism, according to which the large-scale strains do negative work against turbulent stress as they stretch out the isolines of small-scale vorticity. In particular, we studied a multi-scale gradient (MSG) expansion developed by Eyink (J. Fluid Mech., vol. 549, 2006a, p. 159) for the turbulent stress, whose contributions to inverse cascade can all be explained by ‘thinning’. The MSG expansion up to second order in space gradients was found to predict well the magnitude, spatial structure and scale distribution of the local energy flux. The majority of mean flux was found to be due to the relative rotation of strain matrices at different length scales, a first-order effect of ‘thinning’. The remainder arose from two second-order effects, differential strain rotation and vorticity gradient stretching. Our findings give strong support to vortex thinning as the fundamental mechanism of two-dimensional inverse energy cascade.


Sign in / Sign up

Export Citation Format

Share Document