scholarly journals Thermodynamic effects during growth and collapse of a single cavitation bubble

2013 ◽  
Vol 736 ◽  
pp. 44-66 ◽  
Author(s):  
Matevž Dular ◽  
Olivier Coutier-Delgosha

AbstractThe thermodynamic effects associated with the growth and collapse of a single cavitation bubble are investigated in the present paper by an experimental approach. The study focuses on the temperature variations in the liquid surrounding the bubble. Experiments are conducted in a cylinder partially filled with water at an ambient temperature and atmospheric pressure. The bubble growth results from the expansion of an initial air bubble, due to the pressure wave generated by a so-called ‘tube-arrest’ method. Several locations of the bubble, at different distances from the bottom wall of the cylinder, are considered. The bottom wall is made of sapphire, which is transparent to both the visible and infrared light spectra which enables temperature measurements by a high-speed thermovision camera at a wavelength of 3–$5~\unicode[.5,0][STIXGeneral,Times]{x03BC} \mathrm{m} $. Water is opaque to the infrared light spectrum, hence only temperatures in the boundary layer and on the liquid vapour interface could be determined. A temperature decrease of ${\sim }3$ K was recorded during the bubble growth while an increase up to 4 K was detected during the collapse. Experimental results are compared to the predictions of the ‘thermal delay’ model based on the assumption that the bubble growth and collapse are due to phase changes only. In this approach, the temperature variations are related to the latent heat exchanges during the vapourization and condensation processes. On the basis of these results, the respective effects of phase change and air dilatation/compression in the bubble dynamics are discussed.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
N. Cruz-González ◽  
O. Calzadilla ◽  
J. Roque ◽  
F. Chalé-Lara ◽  
J. K. Olarte ◽  
...  

In the last decade, the urgent need to environmental protection has promoted the development of new materials with potential applications to remediate air and polluted water. In this work, the effect of the TiO2 thin layer over MoS2 material in photocatalytic activity is reported. We prepared different heterostructures, using a combination of electrospinning, solvothermal, and spin-coating techniques. The properties of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and X-ray photoelectron spectroscopy (XPS). The adsorption and photocatalytic activity were evaluated by discoloration of rhodamine B solution. The TiO2-MoS2/TiO2 heterostructure presented three optical absorption edges at 1.3 eV, 2.28 eV, and 3.23 eV. The high adsorption capacity of MoS2 was eliminated with the addition of TiO2 thin film. The samples show high photocatalytic activity in the visible-IR light spectrum.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


2018 ◽  
Vol 50 (6) ◽  
pp. 065512 ◽  
Author(s):  
Toshiyuki Ogasawara ◽  
Taisei Horiba ◽  
Taisuke Sano ◽  
Hiroyuki Takahira

2021 ◽  
Vol 56 (5) ◽  
pp. 583-594
Author(s):  
Napat Watjanatepin ◽  
Paiboon Kiatsookkanatorn

Despite the continuous trend of an LED solar simulator development, there was little to be found in the application of a phosphor-converted natural white LED (pc-nWLED) for construction. This article reported the design and construction of an LED solar simulator which combined a pc-nWLED with infrared LEDs. The objectives of this study are to determine the performance of a novel solar simulator including non-uniformity (SNE), temporal stability (TIE), and spectrum mismatch (SM). This is followed by an experimental study of the correlation between the LED’s temperature and SNE. A spectroradiometer, pyranometer, and a custom-made non-uniformity measurement system were applied to test the performance characteristics of this solar simulator. The results indicated that the proposed solar simulator could achieve the AAA class. The results showed 0.90-1.08 of SM, 0.83% TIE, and 1.34% of SNE. The SNE indicated the positive significant correlation with the LED’s temperature, with an approximate of +0.043% per °C. A good cooling system for the LED module was necessary to maintain constant light uniformity. The blue-chip phosphor converted white LED combination with color mixed of 730 nm, 850 nm, and 940 nm could emit a light spectrum that was very close to the reference spectrum of about 99.6%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Wang ◽  
Ting-Qiang Xie

Purpose Cavitation erosion has always been a common technical problem in a hydraulic discharging structure. This paper aims to investigate the cavitation erosion behavior of hydraulic concrete under high-speed flow. Design/methodology/approach A high-speed and high-pressure venturi cavitation erosion generator was used to simulate the strong cavitation. The characteristics of hydrodynamic loads of cavitation bubble collapse zone, the failure characteristics and the erosion development process of concrete were investigated. The main influencing factors of cavitation erosion were discussed. Findings The collapse of the cavitation bubble group produced a high frequency, continuous and unsteady pulse load on the wall of concrete, which was more likely to cause fatigue failure of concrete materials. The cavitation action position and the main frequency of impact load were greatly affected by the downstream pressure. A power exponential relationship between cavitation load, cavitation erosion and flow speed was observed. With the increase of concrete strength, the degree of damage of cavitation erosion was approximately linearly reduced. Originality/value After cavitation erosion, a skeleton structure was formed by the accumulation of granular particles, and the relatively independent bulk structure of the surface differed from the flake structure formed after abrasion.


1972 ◽  
Vol 94 (4) ◽  
pp. 825-832 ◽  
Author(s):  
C. L. Kling ◽  
F. G. Hammitt

The collapse of spark-induced cavitation bubbles in a flowing system was studied by means of high speed photography. The migration of cavitation bubbles toward a nearby solid boundary during collapse and rebound was observed. Near its minimum volume the bubble typically formed a high speed microjet, which struck the nearby surface causing individual damage craters on soft aluminum.


Sign in / Sign up

Export Citation Format

Share Document