Speeding up thermocapillary migration of a confined bubble by wall slip

2014 ◽  
Vol 746 ◽  
pp. 31-52 ◽  
Author(s):  
Ying-Chih Liao ◽  
Yen-Ching Li ◽  
Yu-Chih Chang ◽  
Chih-Yung Huang ◽  
Hsien-Hung Wei

AbstractIt is usually believed that wall slip contributes small effects to macroscopic flow characteristics. Here we demonstrate that this is not the case for the thermocapillary migration of a long bubble in a slippery tube. We show that a fraction of the wall slip, with the slip length $\lambda $ much smaller than the tube radius $R$, can make the bubble migrate much faster than without wall slip. This speedup effect occurs in the strong-slip regime where the film thickness $b$ is smaller than $\lambda $ when the Marangoni number $S= \tau _{T} R/\sigma _{0}~ (\ll 1)$ is below the critical value $S^* \sim (\lambda /R)^{1/2}$, where $\tau _{T}$ is the driving thermal stress and $\sigma _{0}$ is the surface tension. The resulting bubble migration speed is found to be $U_{b} \sim (\sigma _{0}/\mu )S^{3}(\lambda /R)$, which can be more than a hundred times faster than the no-slip result $U_{b} \sim (\sigma _{0}/\mu )S^{5}$ (Wilson, J. Eng. Math., vol. 29, 1995, pp. 205–217; Mazouchi & Homsy, Phys. Fluids, vol. 12, 2000, pp. 542–549), with $\mu $ being the fluid viscosity. The change from the fifth power law to the cubic one also indicates a transition from the no-slip state to the strong-slip state, albeit the film thickness always scales as $b\sim RS^{2}$. The formal lubrication analysis and numerical results confirm the above findings. Our results in different slip regimes are shown to be equivalent to those for the Bretherton problem (Liao, Li & Wei, Phys. Rev. Lett., vol. 111, 2013, 136001). Extension to polygonal tubes and connection to experiments are also made. It is found that the slight discrepancy between experiment (Lajeunesse & Homsy, Phys. Fluids, vol. 15, 2003, pp. 308–314) and theory (Mazouchi & Homsy, Phys. Fluids, vol. 13, 2001, pp. 1594–1600) can be interpreted by including wall slip effects.

2014 ◽  
Vol 741 ◽  
pp. 200-227 ◽  
Author(s):  
Yen-Ching Li ◽  
Ying-Chih Liao ◽  
Ten-Chin Wen ◽  
Hsien-Hung Wei

AbstractAgainst the common wisdom that wall slip plays only a minor role in global flow characteristics, here we demonstrate theoretically for the displacement of a long bubble in a slippery channel that the well-known Bretherton $2/3$ law can break down due to a fraction of wall slip with the slip length $\lambda $ much smaller than the channel depth $R$. This breakdown occurs when the film thickness $h_{\infty } $ is smaller than $\lambda $, corresponding to the capillary number $Ca$ below the critical value $Ca^{\ast } \sim (\lambda /R)^{3 / 2}$. In this strong slip regime, a new quadratic law $h_{\infty } /R \sim Ca^{2} (R/\lambda )^{2}$ is derived for a film much thinner than that predicted by the Bretherton law. Moreover, both the $2/3$ and the quadratic laws can be unified into the effective $2/3$ law, with the viscosity $\mu $ replaced by an apparent viscosity $\mu _{app}= \mu h_{\infty } /({\lambda } + h_{\infty })$. A similar extension can also be made for coating over textured surfaces where apparent slip lengths are large. Further insights can be gained by making a connection with drop spreading. We find that the new quadratic law can lead to $\theta _{d} \propto Ca^{1 / 2} $ for the apparent dynamic contact angle of a spreading droplet, subsequently making the spreading radius grow with time as $r \propto t^{1 / 8}$. In addition, the precursor film is found to possess $\ell _{f} \propto Ca^{ - 1 / 2}$ in length and therefore spreads as $\ell _{f} \propto t^{1 / 3}$ in an anomalous diffusion manner. All these features are accompanied by no-slip-to-slip transitions sensitive to the amount of slip, markedly different from those on no-slip surfaces. Our findings not only provide plausible accounts for some apparent departures from no-slip predictions seen in experiments, but also offer feasible alternatives for assessing wall slip effects experimentally.


2015 ◽  
Vol 781 ◽  
pp. 578-594 ◽  
Author(s):  
David Halpern ◽  
Yen-Ching Li ◽  
Hsien-Hung Wei

We report that the well-known Marangoni film thickening in surfactant-laden Landau–Levich–Bretherton coating flow can be completely suppressed by wall slip. The analysis is made by mainly looking at how the deposited film thickness varies with the capillary number $Ca$ ($\ll 1$) and the dimensionless slip length ${\it\Lambda}={\it\lambda}/R$ ($\ll 1$) in the presence of a trace amount of insoluble surfactant, where ${\it\lambda}$ is the slip length and $R$ is the radius of the meniscus. When slip effects are weak at sufficiently large $Ca$ (but still $\ll 1$) such that $Ca\gg {\it\Lambda}^{3/2}$, the film thickness can still vary as $Ca^{2/3}$ and be thickened by surfactant as if wall slip were absent. However, when slip effects become strong by lowering $Ca$ to $Ca\ll {\it\Lambda}^{3/2}$, the film, especially when surface diffusion of surfactant is negligible, does not get thinner according to the strong-slip quadratic law reported previously (Liao et al., Phys. Rev. Lett., vol. 111, 2013, 136001; Li et al., J. Fluid Mech., vol. 741, 2014, pp. 200–227). Instead, the film behaves as if both surfactant and wall slip were absent, precisely following the no-slip $2/3$ law without surfactant. Effects of surface diffusion are also examined, revealing three distinct regimes as $Ca$ is varied from small to large values: the strong-slip quadratic scaling without surfactant, the no-slip $2/3$ scaling without surfactant and the film thickening along the no-slip $2/3$ scaling with surfactant. An experiment is also suggested to test the above findings.


2017 ◽  
Vol 10 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Wang Shou-long ◽  
Li Ai-fen ◽  
Peng Rui-gang ◽  
Yu Miao ◽  
Fu Shuai-shi

Objective:The rheological properties of oil severely affect the determination of percolation theory, development program, production technology and oil-gathering and transferring process, especially for super heavy oil reservoirs. This paper illustrated the basic seepage morphology of super heavy oil in micro pores based on its rheological characteristics.Methods:The non-linear flow law and start-up pressure gradient of super heavy oil under irreducible water saturation at different temperatures were performed with different permeable sand packs. Meanwhile, the empirical formulas between start-up pressure gradient, the parameters describing the velocity-pressure drop curve and the ratio of gas permeability of a core to fluid viscosity were established.Results:The results demonstrate that temperature and core permeability have significant effect on the non-linear flow characteristics of super heavy oil. The relationship between start-up pressure gradient of oil, the parameters representing the velocity-pressure drop curve and the ratio of core permeability to fluid viscosity could be described as a power function.Conclusion:Above all, the quantitative description of the seepage law of super heavy oil reservoir was proposed in this paper, and finally the empirical diagram for determining the minimum and maximum start-up pressure of heavy oil with different viscosity in different permeable formations was obtained.


2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Benjamin Cross ◽  
Chloé Barraud ◽  
Cyril Picard ◽  
Liliane Léger ◽  
Frédéric Restagno ◽  
...  

Author(s):  
A. Rustem Aslan ◽  
Oktay Baysal ◽  
Firat O. Edis

A Navier-Stokes (NS) solver for moving and deforming meshes has been modified to investigate numerically the diaphragm-driven flow in and out of two synthetic jet cavity geometries. The piezoelectric-driven diaphragm of the cavity is modeled in a realistic manner as a moving boundary to accurately compute the flow inside the jet cavity. The primary focus of the present paper is to describe the effect of cavity geometry and the wall slip, resulting from the relatively larger Kn number flows associated with micro sized geometries, on the exit jet velocity magnitude. Compressible flow simulations are required for rarefied flows to accurately predict the pressure field. The present computations for the quiescent external flow condition reveal that cavity geometry and the wall slip has an increasing effect on the magnitude of the average jet exit velocity as well as vortex shedding from the orifice.


This research work is proposed at reporting heat transfer on the peristaltic flow of an electrically conducting fluid in a tapered microvessels under the lubrication theory. The proposed geometry analyzes the blood flow in the heart vessels and maintain the pressure level in the human body. The solutions for the distribution of axial velocity, temperature distribution, pressure gradient and stream function have been obtained analytically. The influences of many evolving parameters on the flow characteristics are revealed and deliberated with the assist of figures. The mathematical outcomes show that the trapped bolus enhances in size with increasing slip parameter but decreases with the increase of Grashof number.


2019 ◽  
Vol 39 (10) ◽  
pp. 917-925 ◽  
Author(s):  
Danbo Mao ◽  
Gang Lv ◽  
Guohan Gao ◽  
Bin Fan

Abstract Optical polyimide (PI) films were prepared by spin-coating from nearly non-volatile dimethylacetamide (DMAc) solutions. The uniformity of film thickness met the requirements of diffraction imaging quality. The results show that the final rotating speed ω, dynamic viscosity η, and initial polymer solid concentration c are the main factors affecting the film thickness T, and an empirical relationship which describes the film thickness as a function of the measured parameters was established to be $T \propto {c^{3.473}},{\rm{ }}{\eta ^{0.586}},{\rm{ }}{\omega ^{ - 0.811}}.$ Moreover, the viscosity dependence on concentration is system specific. Unlike traditional photoresist, the thickness uniformity of the PI film is determined by both spinning and precure process, which is intensively discussed in the present work. Uniform, 22-μm thick, PI films with transmitted wavefronts peak to valley (PV) ≤ 1/5 λ and root mean square (RMS) ≤ 1/50 λ were prepared under the optimum process: spin speed 900 rpm, initial fluid viscosity 10,500 cp, final spin time 120 s, precure temperature 70°C, spin process repeated 3 times. The results will find use in the production of optical quality membrane for ultra-lightweight optics or other applications.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
H. Dormois ◽  
N. Fillot ◽  
W. Habchi ◽  
G. Dalmaz ◽  
P. Vergne ◽  
...  

This paper presents a study of the spinning influence on film thickness and friction in EHL circular contacts under isothermal and fully flooded conditions. Pressure and film thickness profiles are computed with an original full-system finite element approach. Friction was thereafter investigated with the help of a classical Ree–Eyring model to calculate the longitudinal and transverse shear stresses. An analysis of both the velocity and shear stress distributions at every point of the contact surfaces has allowed explaining the fall of the longitudinal friction coefficient due to the occurrence of opposite shear stresses over the contact area. Moreover in the transverse direction spinning favors large shear stresses of opposite signs, decreasing the fluid viscosity by non-Newtonian effects. These effects have direct and coupled consequences on the friction reduction that is observed in the presence of spinning. They are expected to further decrease friction in real situations due to shear heating.


Sign in / Sign up

Export Citation Format

Share Document