Drag force on a liquid domain moving inside a membrane sheet surrounded by aqueous medium

2015 ◽  
Vol 779 ◽  
pp. 468-482 ◽  
Author(s):  
V. Laxminarsimha Rao ◽  
Sovan Lal Das

We compute the drag on a circular and liquid microdomain diffusing in a two-dimensional fluid lipid bilayer membrane surrounded by a fluid above and below. Under the assumptions that the liquids are incompressible and the flow is of low Reynolds number, Stokes’ equations describe the flow in the two-dimensional membrane as well as in the surrounding three-dimensional fluid. The expression for the drag force on the liquid domain involves Fredholm integral equations of the second kind, which we numerically solve using discrete collocation method based on Chebyshev polynomials. We observe that when the domain is more viscous than the surrounding membrane (including the rigid domain case), the drag force is almost independent of the viscosity contrast between the domain and the surrounding membrane, as also observed earlier in experiments by other researchers. The mobility also varies logarithmically with Boussinesq number${\it\beta}$for large${\it\beta}$. On the other hand, for a less viscous domain the dimensionless drag force reduces with increasing viscosity contrast, and a significant change in the drag force, from that when there is no viscosity contrast or when the domain is rigid, has been observed. Further, the logarithmic behaviour of the mobility no longer holds for less viscous domains. Our method of computing the drag force and diffusion coefficient is valid for arbitrary viscosity contrast between the domain and membrane and any domain size (subject to${\it\beta}\geqslant 5$).

2017 ◽  
Vol 822 ◽  
pp. 54-79 ◽  
Author(s):  
R. J. Tomlin ◽  
D. T. Papageorgiou ◽  
G. A. Pavliotis

We consider the full three-dimensional dynamics of a thin falling liquid film on a flat plate inclined at some non-zero angle to the horizontal. In addition to gravitational effects, the flow is driven by an electric field which is normal to the substrate far from the flow. This extends the work of Tseluiko & Papageorgiou (J. Fluid Mech., vol. 556, 2006b, pp. 361–386) by including transverse dynamics. We study both the cases of overlying and hanging films, where the liquid lies above or below the substrate, respectively. Starting with the Navier–Stokes equations coupled with electrostatics, a fully nonlinear two-dimensional Benney equation for the interfacial dynamics is derived, valid for waves that are long compared to the film thickness. The weakly nonlinear evolution is governed by a Kuramoto–Sivashinsky equation with a non-local term due to the electric field effect. The electric field term is linearly destabilising and produces growth rates proportional to $|\unicode[STIX]{x1D743}|^{3}$, where $\unicode[STIX]{x1D743}$ is the wavenumber vector of the perturbations. It is found that transverse gravitational instabilities are always present for hanging films, and this leads to unboundedness of nonlinear solutions even in the absence of electric fields – this is due to the anisotropy of the nonlinearity. For overlying films and a restriction on the strength of the electric field, the equation is well-posed in the sense that it possesses bounded solutions. This two-dimensional equation is studied numerically for the case of periodic boundary conditions in order to assess the effects of inertia, electric field strength and the size of the periodic domain. Rich dynamical behaviours are observed and reported. For subcritical Reynolds number flows, a sufficiently strong electric field can promote non-trivial dynamics for some choices of domain size, leading to fully two-dimensional evolutions of the interface. We also observe two-dimensional spatiotemporal chaos on sufficiently large domains. For supercritical flows, such two-dimensional chaotic dynamics emerges in the absence of a field, and its presence enhances the amplitude of the fluctuations and broadens their spectrum.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Niklas Ericsson

Abstract We develop a framework for solving the stationary, incompressible Stokes equations in an axisymmetric domain. By means of Fourier expansion with respect to the angular variable, the three-dimensional Stokes problem is reduced to an equivalent, countable family of decoupled two-dimensional problems. By using decomposition of three-dimensional Sobolev norms, we derive natural variational spaces for the two-dimensional problems, and show that the variational formulations are well-posed. We analyze the error due to Fourier truncation and conclude that, for data that are sufficiently regular, it suffices to solve a small number of two-dimensional problems.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


Author(s):  
Mohammad Saghafi ◽  
Roham Lavimi

In this research, the flow around the autonomous underwater vehicles with symmetrical bodies is numerically investigated. Increasing the drag force in autonomous underwater vehicles increases the energy consumption and decreases the duration of underwater exploration and operations. Therefore, the main objective of this research is to decrease drag force with the change in geometry to reduce energy consumption. In this study, the decreasing or increasing trends of the drag force of axisymmetric bare hulls have been studied by making alterations in the curve equations and creating the optimal geometric shapes in terms of hydrodynamics for the noses and tails of autonomous underwater vehicles. The incompressible, three-dimensional, and steady Navier–Stokes equations have been used to simulate the flow. Also, k-ε Realizable with enhanced wall treatment was used for turbulence modeling. Validation results were acceptable with respect to the 3.6% and 1.4% difference with numerical and experimental results. The results showed that all the autonomous underwater vehicle hulls designed in this study, at an attack angle of 0°, had a lower drag force than the autonomous underwater vehicle hull used for validation except geometry no. 1. In addition, nose no. 3 has been selected as the best nose according to the lowest value of stagnation pressure, and also tail no. 3 has been chosen as the best tail due to the production of the lowest vortex. Therefore, geometry no. 5 has been designed using nose and tail no. 3. The comparison made here showed that the maximum drag reduction in geometry no. 5 was equal to 26%, and therefore, it has been selected as the best bare hull in terms of hydrodynamics.


2006 ◽  
Vol 128 (6) ◽  
pp. 1394-1399 ◽  
Author(s):  
Donghyun You ◽  
Meng Wang ◽  
Rajat Mittal ◽  
Parviz Moin

A novel structured grid approach which provides an efficient way of treating a class of complex geometries is proposed. The incompressible Navier-Stokes equations are formulated in a two-dimensional, generalized curvilinear coordinate system complemented by a third quasi-curvilinear coordinate. By keeping all two-dimensional planes defined by constant third coordinate values parallel to one another, the proposed approach significantly reduces the memory requirement in fully three-dimensional geometries, and makes the computation more cost effective. The formulation can be easily adapted to an existing flow solver based on a two-dimensional generalized coordinate system coupled with a Cartesian third direction, with only a small increase in computational cost. The feasibility and efficiency of the present method have been assessed in a simulation of flow over a tapered cylinder.


2011 ◽  
Vol 666 ◽  
pp. 506-520 ◽  
Author(s):  
F. DOMENICHINI

The vortex formation behind an orifice is a widely investigated phenomenon, which has been recently studied in several problems of biological relevance. In the case of a circular opening, several works in the literature have shown the existence of a limiting process for vortex ring formation that leads to the concept of critical formation time. In the different geometric arrangement of a planar flow, which corresponds to an opening with straight edges, it has been recently outlined that such a concept does not apply. This discrepancy opens the question about the presence of limiting conditions when apertures with irregular shape are considered. In this paper, the three-dimensional vortex formation due to the impulsively started flow through slender openings is studied with the numerical solution of the Navier–Stokes equations, at values of the Reynolds number that allow the comparison with previous two-dimensional findings. The analysis of the three-dimensional results reveals the two-dimensional nature of the early vortex formation phase. During an intermediate phase, the flow evolution appears to be driven by the local curvature of the orifice edge, and the time scale of the phenomena exhibits a surprisingly good agreement with those found in axisymmetric problems with the same curvature. The long-time evolution shows the complete development of the three-dimensional vorticity dynamics, which does not allow the definition of further unifying concepts.


2008 ◽  
Vol 599 ◽  
pp. 309-339 ◽  
Author(s):  
GUILLAUME A. BRÈS ◽  
TIM COLONIUS

Direct numerical simulations are performed to investigate the three-dimensional stability of compressible flow over open cavities. A linear stability analysis is conducted to search for three-dimensional global instabilities of the two-dimensional mean flow for cavities that are homogeneous in the spanwise direction. The presence of such instabilities is reported for a range of flow conditions and cavity aspect ratios. For cavities of aspect ratio (length to depth) of 2 and 4, the three-dimensional mode has a spanwise wavelength of approximately one cavity depth and oscillates with a frequency about one order of magnitude lower than two-dimensional Rossiter (flow/acoustics) instabilities. A steady mode of smaller spanwise wavelength is also identified for square cavities. The linear results indicate that the instability is hydrodynamic (rather than acoustic) in nature and arises from a generic centrifugal instability mechanism associated with the mean recirculating vortical flow in the downstream part of the cavity. These three-dimensional instabilities are related to centrifugal instabilities previously reported in flows over backward-facing steps, lid-driven cavity flows and Couette flows. Results from three-dimensional simulations of the nonlinear compressible Navier–Stokes equations are also reported. The formation of oscillating (and, in some cases, steady) spanwise structures is observed inside the cavity. The spanwise wavelength and oscillation frequency of these structures agree with the linear analysis predictions. When present, the shear-layer (Rossiter) oscillations experience a low-frequency modulation that arises from nonlinear interactions with the three-dimensional mode. The results are consistent with observations of low-frequency modulations and spanwise structures in previous experimental and numerical studies on open cavity flows.


2002 ◽  
Vol 451 ◽  
pp. 261-282 ◽  
Author(s):  
F. GRAF ◽  
E. MEIBURG ◽  
C. HÄRTEL

We consider the situation of a heavier fluid placed above a lighter one in a vertically arranged Hele-Shaw cell. The two fluids are miscible in all proportions. For this configuration, experiments and nonlinear simulations recently reported by Fernandez et al. (2002) indicate the existence of a low-Rayleigh-number (Ra) ‘Hele-Shaw’ instability mode, along with a high-Ra ‘gap’ mode whose dominant wavelength is on the order of five times the gap width. These findings are in disagreement with linear stability results based on the gap-averaged Hele-Shaw approach, which predict much smaller wavelengths. Similar observations have been made for immiscible flows as well (Maxworthy 1989).In order to resolve the above discrepancy, we perform a linear stability analysis based on the full three-dimensional Stokes equations. A generalized eigenvalue problem is formulated, whose numerical solution yields both the growth rate and the two-dimensional eigenfunctions in the cross-gap plane as functions of the spanwise wavenumber, an ‘interface’ thickness parameter, and Ra. For large Ra, the dispersion relations confirm that the optimally amplified wavelength is about five times the gap width, with the exact value depending on the interface thickness. The corresponding growth rate is in very good agreement with the experimental data as well. The eigenfunctions indicate that the predominant fluid motion occurs within the plane of the Hele-Shaw cell. However, for large Ra purely two-dimensional modes are also amplified, for which there is no motion in the spanwise direction. Scaling laws are provided for the dependence of the maximum growth rate, the corresponding wavenumber, and the cutoff wavenumber on Ra and the interface thickness. Furthermore, the present results are compared both with experimental data, as well as with linear stability results obtained from the Hele-Shaw equations and a modified Brinkman equation.


1987 ◽  
Vol 184 ◽  
pp. 207-243 ◽  
Author(s):  
Ralph W. Metcalfe ◽  
Steven A. Orszag ◽  
Marc E. Brachet ◽  
Suresh Menon ◽  
James J. Riley

The three-dimensional stability of two-dimensional vortical states of planar mixing layers is studied by direct numerical integration of the Navier-Stokes equations. Small-scale instabilities are shown to exist for spanwise scales at which classical linear modes are stable. These modes grow on convective timescales, extract their energy from the mean flow and exist at moderately low Reynolds numbers. Their growth rates are comparable with the most rapidly growing inviscid instability and with the growth rates of two-dimensional subharmonic (pairing) modes. At high amplitudes, they can evolve into pairs of counter-rotating, streamwise vortices, connecting the primary spanwise vortices, which are very similar to the structures observed in laboratory experiments. The three-dimensional modes do not appear to saturate in quasi-steady states as do the purely two-dimensional fundamental and subharmonic modes in the absence of pairing. The subsequent evolution of the flow depends on the relative amplitudes of the pairing modes. Persistent pairings can inhibit three-dimensional instability and, hence, keep the flow predominantly two-dimensional. Conversely, suppression of the pairing process can drive the three-dimensional modes to more chaotic, turbulent-like states. An analysis of high-resolution simulations of fully turbulent mixing layers confirms the existence of rib-like structures and that their coherence depends strongly on the presence of the two-dimensional pairing modes.


Sign in / Sign up

Export Citation Format

Share Document