scholarly journals Feedback control of unstable flows: a direct modelling approach using the Eigensystem Realisation Algorithm

2016 ◽  
Vol 793 ◽  
pp. 41-78 ◽  
Author(s):  
Thibault L. B. Flinois ◽  
Aimee S. Morgans

Obtaining low-order models for unstable flows in a systematic and computationally tractable manner has been a long-standing challenge. In this study, we show that the Eigensystem Realisation Algorithm (ERA) can be applied directly to unstable flows, and that the resulting models can be used to design robust stabilising feedback controllers. We consider the unstable flow around a D-shaped body, equipped with body-mounted actuators, and sensors located either in the wake or on the base of the body. A linear model is first obtained using approximate balanced truncation. It is then shown that it is straightforward and justified to obtain models for unstable flows by directly applying the ERA to the open-loop impulse response. We show that such models can also be obtained from the response of the nonlinear flow to a small impulse. Using robust control tools, the models are used to design and implement both proportional and $\mathscr{H}_{\infty }$ loop-shaping controllers. The designed controllers were found to be robust enough to stabilise the wake, even from the nonlinear vortex shedding state and in some cases at off-design Reynolds numbers.

2007 ◽  
Vol 592 ◽  
pp. 89-115 ◽  
Author(s):  
A. MILIOU ◽  
A. DE VECCHI ◽  
S. J. SHERWIN ◽  
J. M. R. GRAHAM

Three-dimensional spectral/hp computations have been performed to study the fundamental mechanisms of vortex shedding in the wake of curved circular cylinders at Reynolds numbers of 100 and 500. The basic shape of the body is a circular cylinder whose centreline sweeps through a quarter section of a ring and the inflow direction lies on the plane of curvature of the quarter ring: the free stream is then parallel to the geometry considered and the part of the ring that is exposed to it will be referred to as the ‘leading edge’. Different configurations were investigated with respect to the leading-edge orientation. In the case of a convex-shaped geometry, the stagnation face is the outer surface of the ring: this case exhibited fully three-dimensional wake dynamics, with the vortex shedding in the upper part of the body driving the lower end at one dominant shedding frequency for the whole cylinder span. The vortex-shedding mechanism was therefore not governed by the variation of local normal Reynolds numbers dictated by the curved shape of the leading edge. A second set of simulations were conducted with the free stream directed towards the inside of the ring, in the so-called concave-shaped geometry. No vortex shedding was detected in this configuration: it is suggested that the strong axial flow due to the body's curvature and the subsequent production of streamwise vorticity plays a key role in suppressing the wake dynamics expected in the case of flow past a straight cylinder. The stabilizing mechanism stemming from the concave curved geometry was still found to govern the wake behaviour even when a vertical extension was added to the top of the concave ring, thereby displacing the numerical symmetry boundary condition at this point away from the top of the deformed cylinder. In this case, however, the axial flow from the deformed cylinder was drawn into the wake of vertical extension, weakening the shedding process expected from a straight cylinder at these Reynolds numbers. These considerations highlight the importance of investigating flow past curved cylinders using a full three-dimensional approach, which can properly take into account the role of axial velocity components without the limiting assumptions of a sectional analysis, as is commonly used in industrial practice. Finally, towing-tank flow visualizations were also conducted and found to be in qualitative agreement with the computational findings.


1997 ◽  
Vol 343 ◽  
pp. 235-265 ◽  
Author(s):  
ANIL PRASAD ◽  
CHARLES H. K. WILLIAMSON

There has recently been a surge in activity concerning the development of three-dimensionality in the wakes of nominally two-dimensional bluff bodies, yielding the realization that end effects can influence the wake vortex shedding pattern over long spanlengths. Much of this work has been focused on low Reynolds numbers (Re), but virtually no studies have investigated to what extent it is possible to control shedding patterns at higher Reynolds numbers, through the use of end manipulation. In the present paper, we demonstrate that it is possible to induce parallel shedding, oblique shedding and vortex dislocations, by manipulation of the end conditions, over a large range of Reynolds number. Such patterns affect the frequency of primary wake instability and its amplitude of fluctuation, as they do at low Reynolds number, although distinct differences are found at the higher Reynolds numbers.We find that imposition of oblique shedding conditions at high Reynolds number leads to a spatial variation of both the oblique shedding angle and shedding frequency across the span, and to sparse dislocations which are not restricted to the spanwise end regions, as they are at low Reynolds numbers (under similar geometrical conditions). In the wake transition regime (Re=190–250), it is confirmed that the spontaneous appearance of vortex dislocations in mode-A shedding precludes the control of shedding patterns using end manipulation. However, it has proven possible to extend the regime of Reynolds number where dislocations ‘naturally’ exist to Re>250, by introducing them artificially through end control, where they would otherwise not occur. The possibility of introducing dislocations and of inducing oblique vortex shedding at higher Reynolds numbers has practical significance, if one can deliberately decorrelate the vortex shedding, and hence reduce the spanwise-integrated unsteady fluid forces on the body.We confirm the existence of a transition in the mode of shedding at Re≈5000 (originally found by Norberg 1987) under conditions where parallel shedding is attempted. This mode transition displays similarities to an inverse of the mode A→mode B transition that is found in the wake transition regime. It is clear that vortex dislocations occur beyond Re=5000, although it is not clear why the flow is unstable to such a mode. Furthermore, there appears to be some support for the suggestion that vortex dislocations may be a feature of the flow for Re at least up to 30×103, as evidenced by the work of Norberg (1994).


1996 ◽  
Vol 327 ◽  
pp. 73-99 ◽  
Author(s):  
Nathalie Boisaubert ◽  
Madeleine Coutanceau ◽  
Patrick Ehrmann

As a first step in a more general study of the influence of the body shape upon the initial time-development of wake vortices, we consider the case of a 5.20 aspect-ratio semicircular-section cylinder, fitted with two endplates, and with the rounded side and the flat side in turn facing the oncoming current. The flow structure is analysed by means of a detailed qualitative and quantitative analysis of numerous flow visualization pictures, for Reynolds numbers Re ranging between 60 and 600. Beyond the first phase of development, necessary for the vortex-shedding process to take place (t* [ges ] 6), a change in the flow evolution with Re is found for both body configurations, at a critical Reynolds number Rec whose final value is, within about 5%, 190 and 140 for the rounded and flat forebody respectively. However, this change varies with the body shape. Thus, above Re = 200, it is shown that the reversal of the body compared to the free stream (flat-forebody configuration) implies a clear difference in the wake development with a quasi-symmetrical shifting of the vortex cores to the rear of the recirculating zone and a complete annihilation of the process of vortex shedding, at least during the limited period of time corresponding to the present observation. The consequences of the modifications of the wake behaviour are quantitatively evaluated by considering the time- and Re-evolution of the wake geometrical parameters and of the axial velocity distribution; they are related to the body geometry.


2015 ◽  
Vol 9 (3) ◽  
pp. 2487-2502 ◽  
Author(s):  
Igor V. Lebed

Scenario of appearance and development of instability in problem of a flow around a solid sphere at rest is discussed. The scenario was created by solutions to the multimoment hydrodynamics equations, which were applied to investigate the unstable phenomena. These solutions allow interpreting Stokes flow, periodic pulsations of the recirculating zone in the wake behind the sphere, the phenomenon of vortex shedding observed experimentally. In accordance with the scenario, system loses its stability when entropy outflow through surface confining the system cannot be compensated by entropy produced within the system. The system does not find a new stable position after losing its stability, that is, the system remains further unstable. As Reynolds number grows, one unstable flow regime is replaced by another. The replacement is governed tendency of the system to discover fastest path to depart from the state of statistical equilibrium. This striving, however, does not lead the system to disintegration. Periodically, reverse solutions to the multimoment hydrodynamics equations change the nature of evolution and guide the unstable system in a highly unlikely direction. In case of unstable system, unlikely path meets the direction of approaching the state of statistical equilibrium. Such behavior of the system contradicts the scenario created by solutions to the classic hydrodynamics equations. Unstable solutions to the classic hydrodynamics equations are not fairly prolonged along time to interpret experiment. Stable solutions satisfactorily reproduce all observed stable medium states. As Reynolds number grows one stable solution is replaced by another. They are, however, incapable of reproducing any of unstable regimes recorded experimentally. In particular, stable solutions to the classic hydrodynamics equations cannot put anything in correspondence to any of observed vortex shedding modes. In accordance with our interpretation, the reason for this isthe classic hydrodynamics equations themselves.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


2007 ◽  
Vol 573 ◽  
pp. 171-190 ◽  
Author(s):  
A. DIPANKAR ◽  
T. K. SENGUPTA ◽  
S. B. TALLA

Vortex shedding behind a cylinder can be controlled by placing another small cylinder behind it, at low Reynolds numbers. This has been demonstrated experimentally by Strykowski & Sreenivasan (J. Fluid Mech. vol. 218, 1990, p. 74). These authors also provided preliminary numerical results, modelling the control cylinder by the innovative application of boundary conditions on some selective nodes. There are no other computational and theoretical studies that have explored the physical mechanism. In the present work, using an over-set grid method, we report and verify numerically the experimental results for flow past a pair of cylinders. Apart from providing an accurate solution of the Navier–Stokes equation, we also employ an energy-based receptivity analysis method to discuss some aspects of the physical mechanism behind vortex shedding and its control. These results are compared with the flow picture developed using a dynamical system approach based on the proper orthogonal decomposition (POD) technique.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1046-1050
Author(s):  
Yuri E. Litvinenko

Electromagnetic expulsion acts on a body suspended in a conducting fluid or plasma, which is subject to the influence of electric and magnetic fields. Physically, the effect is a magnetohydrodynamic analogue of the buoyancy (Archimedean) force, which is caused by the nonequal electric conductivities inside and outside the body. It is suggested that electromagnetic expulsion can drive the observed plasma counter-streaming flows in solar filaments. Exact analytical solutions and scaling arguments for a characteristic plasma flow speed are reviewed, and their applicability in the limit of large magnetic Reynolds numbers, relevant in the solar corona, is discussed.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


1991 ◽  
Vol 113 (3) ◽  
pp. 384-398 ◽  
Author(s):  
M. P. Arnal ◽  
D. J. Goering ◽  
J. A. C. Humphrey

The characteristics of the flow around a bluff body of square cross-section in contact with a solid-wall boundary are investigated numerically using a finite difference procedure. Previous studies (Taneda, 1965; Kamemoto et al., 1984) have shown qualitatively the strong influence of solid-wall boundaries on the vortex-shedding process and the formation of the vortex street downstream. In the present study three cases are investigated which correspond to flow past a square rib in a freestream, flow past a rib on a fixed wall and flow past a rib on a sliding wall. Values of the Reynolds number studied ranged from 100 to 2000, where the Reynolds number is based on the rib height, H, and bulk stream velocity, Ub. Comparisons between the sliding-wall and fixed-wall cases show that the sliding wall has a significant destabilizing effect on the recirculation region behind the rib. Results show the onset of unsteadiness at a lower Reynolds number for the sliding-wall case (50 ≤ Recrit ≤100) than for the fixed-wall case (Recrit≥100). A careful examination of the vortex-shedding process reveals similarities between the sliding-wall case and both the freestream and fixed-wall cases. At moderate Reynolds numbers (Re≥250) the sliding-wall results show that the rib periodically sheds vortices of alternating circulation in much the same manner as the rib in a freestream; as in, for example, Davis and Moore [1982]. The vortices are distributed asymmetrically downstream of the rib and are not of equal strength as in the freestream case. However, the sliding-wall case shows no tendency to develop cycle-to-cycle variations at higher Reynolds numbers, as observed in the freestream and fixed-wall cases. Thus, while the moving wall causes the flow past the rib to become unsteady at a lower Reynolds number than in the fixed-wall case, it also acts to stabilize or “lock-in” the vortex-shedding frequency. This is attributed to the additional source of positive vorticity immediately downstream of the rib on the sliding wall.


Sign in / Sign up

Export Citation Format

Share Document