scholarly journals Conditions for validity of mean flow stability analysis

2016 ◽  
Vol 798 ◽  
pp. 485-504 ◽  
Author(s):  
Samir Beneddine ◽  
Denis Sipp ◽  
Anthony Arnault ◽  
Julien Dandois ◽  
Lutz Lesshafft

This article provides theoretical conditions for the use and meaning of a stability analysis around a mean flow. As such, it may be considered as an extension of the works by McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) to non-parallel flows and by Turton et al. (Phys. Rev. E, vol. 91 (4), 2015, 043009) to broadband flows. Considering a Reynolds decomposition of the flow field, the spectral (or temporal Fourier) mode of the fluctuation field is found to be equal to the action on a turbulent forcing term by the resolvent operator arising from linearisation about the mean flow. The main result of the article states that if, at a particular frequency, the dominant singular value of the resolvent is much larger than all others and if the turbulent forcing at this frequency does not display any preferential direction toward one of the suboptimal forcings, then the spectral mode is directly proportional to the dominant optimal response mode of the resolvent at this frequency. Such conditions are generally met in the case of weakly non-parallel open flows exhibiting a convectively unstable mean flow. The spatial structure of the singular mode may in these cases be approximated by a local spatial stability analysis based on parabolised stability equations (PSE). We have also shown that the frequency spectrum of the flow field at any arbitrary location of the domain may be predicted from the frequency evolution of the dominant optimal response mode and the knowledge of the frequency spectrum at one or more points. Results are illustrated in the case of a high Reynolds number turbulent backward facing step flow.


Author(s):  
Pedro Paredes ◽  
Vassilis Theofilis ◽  
Steffen Terhaar ◽  
Kilian Oberleithner ◽  
Christian Oliver Paschereit

Coherent flow structures in shear flows are generated by instabilities intrinsic to the hydrodynamic field. In a combustion environment, these structures may interact with the flame and cause unsteady heat release rate fluctuations. Prediction and modeling of these structures is thereby highly wanted for thermo-acoustic prediction models. In this work we apply hydrodynamic linear stability analysis to the time-averaged flow field of swirl-stabilized combustors obtained from experiments. Recent fundamental investigations have shown that the linear eigenmodes of the mean flow accurately represent the growth and saturation of the coherent structures. In this work biglobal and local stability analysis is applied to the reacting flow in an industry-relevant combustion system. Both the local and the biglobal analysis accurately predicts the onset and structure of a self-excited global instability that is known in the combustion community as a precessing vortex core (PVC). However, only the global analysis accurately predicts a globally stable flow field for the case without the oscillation, while the local analysis wrongly predicts an unstable global growth rate. The predicted spatial distribution of the amplitude functions using both analysis agree very well to the experimentally identified global mode. The presented tools are considered as very promising for the understanding of the PVC and physics based flow control.



Author(s):  
Pedro Paredes ◽  
Steffen Terhaar ◽  
Kilian Oberleithner ◽  
Vassilis Theofilis ◽  
Christian Oliver Paschereit

Coherent flow structures in shear flows are generated by instabilities intrinsic to the hydrodynamic field. In a combustion environment, these structures may interact with the flame and cause unsteady heat release rate fluctuations. Prediction and modeling of these structures are thereby highly wanted for thermo-acoustic prediction models. In this work, we apply hydrodynamic linear stability analysis to the time-averaged flow field of swirl-stabilized combustors obtained from experiments. Recent fundamental investigations have shown that the linear eigenmodes of the mean flow accurately represent the growth and saturation of the coherent structures. In this work, biglobal and local stability analyses are applied to the reacting flow in an industry-relevant combustion system. Both the local and the biglobal analyses accurately predict the onset and structure of a self-excited global instability that is known in the combustion community as a precessing vortex core (PVC). However, only the global analysis accurately predicts a globally stable flow field for the case without the oscillation, while the local analysis wrongly predicts an unstable global growth rate. The predicted spatial distribution of the amplitude functions using both analyses agrees very well to the experimentally identified global mode. The presented tools are considered as very promising for the understanding of the PVC and physics based flow control.



2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.



Author(s):  
Angela O. Nieckele ◽  
Luis Fernando Figueira da Silva ◽  
Joa˜o Carlos R. Pla´cido

Thermal spallation is a possible drilling technique which consists of using hot supersonic jets as heat source to perforate hard rocks at high rates. This work presents a numerical analysis of a typical spallation drilling configuration, by the finite volume method. The time-averaged conservation equations of mass, momentum and energy are solved to determine the turbulent compressible gas phase flow field. Turbulence is predicted by the classical high Reynolds number κ-ε model, as well as with a low Reynolds number κ-ε model. The influence of the jet Reynolds number is investigated. Special attention is given to the rock surface temperature, since its accurate determination is required to predict spallation rates under field-drilling conditions.



Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.



2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.



2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>



2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Fabio Nardecchia ◽  
Annalisa Di Bernardino ◽  
Francesca Pagliaro ◽  
Paolo Monti ◽  
Giovanni Leuzzi ◽  
...  

Computational fluid dynamics (CFD) is currently used in the environmental field to simulate flow and dispersion of pollutants around buildings. However, the closure assumptions of the turbulence usually employed in CFD codes are not always physically based and adequate for all the flow regimes relating to practical applications. The starting point of this work is the performance assessment of the V2F (i.e., v2¯ − f) model implemented in Ansys Fluent for simulating the flow field in an idealized array of two-dimensional canyons. The V2F model has been used in the past to predict low-speed and wall-bounded flows, but it has never been used to simulate airflows in urban street canyons. The numerical results are validated against experimental data collected in the water channel and compared with other turbulence models incorporated in Ansys Fluent (i.e., variations of both k-ε and k-ω models and the Reynolds stress model). The results show that the V2F model provides the best prediction of the flow field for two flow regimes commonly found in urban canopies. The V2F model is also employed to quantify the air-exchange rate (ACH) for a series of two-dimensional building arrangements, such as step-up and step-down configurations, having different aspect ratios and relative heights of the buildings. The results show a clear dependence of the ACH on the latter two parameters and highlight the role played by the turbulence in the exchange of air mass, particularly important for the step-down configurations, when the ventilation associated with the mean flow is generally poor.



2005 ◽  
Vol 4 (1-2) ◽  
pp. 37-47
Author(s):  
Jean-Philippe Brazier ◽  
Frédéric Moens ◽  
Philippe Bardoux

The flap side edge vortex is suspected to contribute to aerodynamic noise generation. Using a temporal stability analysis, Khorrami and Singer have shown that unstable modes could exist in this vortex. Due to the convective nature of this instability, a spatial analysis is more suitable. This is the subject of the present work. The mean flow past a 2D wing with a half-span flap has been computed with a steady 3D Navier-Stokes code. Then, local linear stability calculations are performed in several planes perpendicular to the vortex axis. The vortex is assumed axisymmetric and modelled with Batchelor's analytical vortex. Using Gaster's relation, the spatial amplification rate is calculated, giving by integration the relative amplitude of the fluctuations. Some low-frequency fluctuations are seen to be preferentially amplified by the vortex, but the amplifications remain small, so that this mechanism alone should not produce important noise in this particular configuration, where the flap deflection angle is moderate.



2001 ◽  
Vol 124 (1) ◽  
pp. 154-165 ◽  
Author(s):  
S. R. Maddah ◽  
H. H. Bruun

This paper presents results obtained from a combined experimental and computational study of the flow field over a multi-element aerofoil with and without an advanced slat. Detailed measurements of the mean flow and turbulent quantities over a multi-element aerofoil model in a wind tunnel have been carried out using stationary and flying hot-wire (FHW) probes. The model configuration which spans the test section 600mm×600mm, is made of three parts: 1) an advanced (heel-less) slat, 2) a NACA 4412 main aerofoil and 3) a NACA 4415 flap. The chord lengths of the elements were 38, 250 and 83 mm, respectively. The results were obtained at a chord Reynolds number of 3×105 and a free Mach number of less than 0.1. The variations in the flow field are explained with reference to three distinct flow field regimes: attached flow, intermittent separated flow, and separated flow. Initial comparative results are presented for the single main aerofoil and the main aerofoil with a nondeflected flap at angles of attacks of 5, 10, and 15 deg. This is followed by the results for the three-element aerofoil with emphasis on the slat performance at angles of attack α=10, 15, 20, and 25 deg. Results are discussed both for a nondeflected flap δf=0deg and a deflected flap δf=25deg. The measurements presented are combined with other related aerofoil measurements to explain the main interaction of the slat/main aerofoil and main aerofoil/flap both for nondeflected and deflected flap conditions. These results are linked to numerically calculated variations in lift and drag coefficients with angle of attack and flap deflection angle.



Sign in / Sign up

Export Citation Format

Share Document