On the lifetime of a pancake anticyclone in a rotating stratified flow

2016 ◽  
Vol 804 ◽  
pp. 688-711 ◽  
Author(s):  
Giulio Facchini ◽  
Michael Le Bars

We present an experimental study of the time evolution of an isolated anticyclonic pancake vortex in a laboratory rotating stratified flow. Motivations come from the variety of compact anticyclones observed to form and persist for a strikingly long lifetime in geophysical and astrophysical settings combining rotation and stratification. We generate anticyclones by injecting a small amount of isodense fluid at the centre of a rotating tank filled with salty water linearly stratified in density. The velocity field is measured by particle image velocimetry in the vortex equatorial plane. Our two control parameters are the Coriolis parameter $f$ and the Brunt–Väisälä frequency $N$. We observe that anticyclones always slowly decay by viscous diffusion, spreading mainly in the horizontal direction irrespective of the initial aspect ratio. This behaviour is correctly explained by a linear analytical model in the limit of small Rossby and Ekman numbers, where density and velocity equations reduce to a single equation for the pressure. In particular for $N/f=1$, this equation ultimately simplifies to a radial diffusion equation, which admits an analytical self-similar solution. Direct numerical simulations further confirm the theoretical predictions that are not accessible to laboratory measurements. Notably, they show that the azimuthal shear stress generates secondary circulations, which advect the density anomaly: this mechanism is responsible for the slow time evolution, rather than the classical viscous dissipation of the azimuthal kinetic energy. The importance of density diffusivity is also analysed, showing that the product of the Schmidt and Burger numbers – rather than the bare Schmidt number – quantifies the importance of salt diffusion. Finally, a brief application to oceanic Meddies is considered.

2009 ◽  
Vol 66 (4) ◽  
pp. 1063-1068 ◽  
Author(s):  
Ross Tulloch ◽  
K. Shafer Smith

Abstract The quasigeostrophic equations consist of the advection of linearized potential vorticity coupled with advection of temperature at the bounding upper and lower surfaces. Numerical models of quasigeostrophic flow often employ greater (scaled) resolution in the horizontal than in the vertical (the two-layer model is an extreme example). In the interior, this has the effect of suppressing interactions between layers at horizontal scales that are small compared to Nδz/f (where δz is the vertical resolution, N the buoyancy frequency, and f the Coriolis parameter). The nature of the turbulent cascade in the interior is, however, not fundamentally altered because the downscale cascade of potential enstrophy in quasigeostrophic turbulence and the downscale cascade of enstrophy in two-dimensional turbulence (occurring layerwise) both yield energy spectra with slopes of −3. It is shown here that a similar restriction on the vertical resolution applies to the representation of horizontal motions at the surfaces, but the penalty for underresolving in the vertical is complete suppression of the surface temperature cascade at small scales and a corresponding artificial steepening of the surface energy spectrum. This effect is demonstrated in the nonlinear Eady model, using a finite-difference representation in comparison with a model that explicitly advects temperature at the upper and lower surfaces. Theoretical predictions for the spectrum of turbulence in the nonlinear Eady model are reviewed and compared to the simulated flows, showing that the latter model yields an accurate representation of the cascade dynamics. To accurately represent dynamics at horizontal wavenumber K in the vertically finite-differenced model, it is found that the vertical grid spacing must satisfy δz ≲ 0.3f/(NK); at wavenumbers K > 0.3f/(Nδz), the spectrum of temperature variance rolls off rapidly.


2005 ◽  
Vol 35 (12) ◽  
pp. 2457-2466 ◽  
Author(s):  
Leif N. Thomas

Abstract The destruction of potential vorticity (PV) at ocean fronts by wind stress–driven frictional forces is examined using PV flux formalism and numerical simulations. When a front is forced by “downfront” winds, that is, winds blowing in the direction of the frontal jet, a nonadvective frictional PV flux that is upward at the sea surface is induced. The flux extracts PV out of the ocean, leading to the formation of a boundary layer thicker than the Ekman layer, with nearly zero PV and nonzero stratification. The PV reduction is not only active in the Ekman layer but is transmitted through the boundary layer via secondary circulations that exchange low PV from the Ekman layer with high PV from the pycnocline. Extraction of PV from the pycnocline by the secondary circulations results in an upward advective PV flux at the base of the boundary layer that scales with the surface, nonadvective, frictional PV flux and that leads to the deepening of the layer. At fronts forced by both downfront winds and a destabilizing atmospheric buoyancy flux FBatm, the critical parameter that determines whether the wind or the buoyancy flux is the dominant cause for PV destruction is (H/δe)(FBwind/FBatm), where H and δe are the mixed layer and Ekman layer depths, FBwind = S2τo/(ρof ), S2 is the magnitude of the lateral buoyancy gradient of the front, τo is the downfront component of the wind stress, ρo is a reference density, and f is the Coriolis parameter. When this parameter is greater than 1, PV destruction by winds dominates and may play an important role in the formation of mode water.


1993 ◽  
Vol 37 ◽  
pp. 299-304
Author(s):  
Shizuo YOSHIDA ◽  
Morimasa OHTANI ◽  
Yoshio TASHIRO ◽  
Shuzo NISHIDA ◽  
Shirou YACI

2006 ◽  
Vol 36 (8) ◽  
pp. 1577-1590 ◽  
Author(s):  
Guillaume Lapeyre ◽  
Patrice Klein ◽  
Bach Lien Hua

Abstract Potential vorticity (PV) conservation implies a strong constraint on the time evolution of the mean density at a given depth. The authors show that, on an f plane and in the absence of sources and sinks of PV, it only depends on two terms, namely, the time evolution of the product between density anomaly and relative vorticity and the vertical PV flux. This primitive equation result, which applies at any depth, suggests that the ageostrophic dynamics induced by baroclinic eddies strongly affect the mean oceanic stratification profile. This result is illustrated for two simple initial-value simulations of a baroclinic, balanced jet. For initial situations propitious to surface frontogenesis, the simulations show a restratification over the whole water column characterized by the amplification in time of the Brunt–Väisälä frequency in the upper oceanic layers. In the absence of surface frontogenesis, such as when the jet is initialized at the middepth of the water column, the restratification is much weaker and slower. Because both simulations have similar kinetic energy and growth rate of baroclinic instability, the results clearly reveal that the restratification is driven by surface frontogenesis in the first case and by vertical PV flux in the interior in the second case. The authors also point out that the dynamics of the interior PV is tightly related to the surface dynamics because of total mass conservation.


2008 ◽  
Vol 17 (10) ◽  
pp. 2214-2220 ◽  
Author(s):  
YASUHISA ABE ◽  
CAIWAN SHEN ◽  
GRIGORY KOSENKO ◽  
DAVID BOILLEY ◽  
BERTRAND G. GIRAUD

The Two-Step Model for fusion of massive systems is briefly recapitulated, which clarifies the mechanism of so-called fusion hindrance. Since the neck changes the potential landscape, especially the height of the conditional saddle point, time evolution of the neck degree of freedom plays a crucial role in fusion. We analytically solve time-evolution of nuclear shape of the composite system from di-nucleus to mono-nucleus. The time-dependent distribution function of the neck is obtained, which elucidates dynamics of fusion processes in general, and thus, is useful for theoretical predictions on synthesis of the superheavy elements with various combinations of incident heavy ions.


Author(s):  
Tom Dörffel ◽  
Ariane Papke ◽  
Rupert Klein ◽  
Natalia Ernst ◽  
Piotr K. Smolarkiewicz

AbstractPäschke et al. (J Fluid Mech, 2012) studied the nonlinear dynamics of strongly tilted vortices subject to asymmetric diabatic heating by asymptotic methods. They found, inter alia, that an azimuthal Fourier mode 1 heating pattern can intensify or attenuate such a vortex depending on the relative orientation of the tilt and the heating asymmetries. The theory originally addressed the gradient wind regime which, asymptotically speaking, corresponds to vortex Rossby numbers of order unity in the limit. Formally, this restricts the applicability of the theory to rather weak vortices. It is shown below that said theory is, in contrast, uniformly valid for vanishing Coriolis parameter and thus applicable to vortices up to low hurricane strengths. An extended discussion of the asymptotics as regards their physical interpretation and their implications for the overall vortex dynamics is also provided in this context. The paper’s second contribution is a series of three-dimensional numerical simulations examining the effect of different orientations of dipolar diabatic heating on idealized tropical cyclones. Comparisons with numerical solutions of the asymptotic equations yield evidence that supports the original theoretical predictions of Päschke et al. In addition, the influence of asymmetric diabatic heating on the time evolution of the vortex centerline is further analyzed, and a steering mechanism that depends on the orientation of the heating dipole is revealed. Finally, the steering mechanism is traced back to the correlation of dipolar perturbations of potential temperature, induced by the vortex tilt, and vertical velocity, for which diabatic heating not necessarily needs to be responsible, but which may have other origins.


1986 ◽  
Vol 108 (4) ◽  
pp. 342-349 ◽  
Author(s):  
J. Berman ◽  
L. F. Mockros

Relatively inefficient heat/mass transfer is characteristic of tubular devices if the Reynolds number is low. One method of improving the heat/mass transfer efficiency of such devices is by inducing transverse laminar secondary circulations that are superimposed on the primary flow field; the resulting transverse velocity components lead to fluid mixing and hence augmented mass transfer in the tube lumen. The present work is a theoretical and experimental investigation of the enhanced transport in rotating, nonaligned, straight tubes, a method of transport enhancement that utilizes Coriolis acceleration to create transverse fluid mixing. This technique couples the transport advantages of coiled tubes with the design advantages of straight tubes. The overall mass balance equation is numerically solved for transfer into fluids flowing steadily through rotating nonaligned straight tubes. This solution, for small Coriolis disturbances, incorporates a third order perturbation solution for the primary and secondary flow fields. For sufficiently small Coriolis disturbances the bulk concentration increase is found to be uniquely determined by the value of a single similarity parameter. As the Coriolis disturbance is increased, however, two additional parameters are required to accurately characterize the mass transfer. In general, increasing the Coriolis accelerations results in an increase in mass transfer. There are solution regimes, however, in which increasing this acceleration can lead to a decrease in mass transfer efficiency. This interesting phenomena, which has important design implications, appears to result from velocity-weighting effects on the exiting sample. Experiments, involving the measurement of oxygen transferred into water and blood, produced data that agree with the theoretical predictions.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


Sign in / Sign up

Export Citation Format

Share Document