scholarly journals Two-point correlation in wall turbulence according to the attached-eddy hypothesis

2017 ◽  
Vol 821 ◽  
pp. 343-357 ◽  
Author(s):  
Hideaki Mouri

For the constant-stress layer of wall turbulence, two-point correlations of velocity fluctuations are studied theoretically by using the attached-eddy hypothesis, i.e. a phenomenological model of a random superposition of energy-containing eddies that are attached to the wall. While previous studies had invoked additional assumptions, we focus on the minimum assumptions of the hypothesis to derive the most general forms of the correlation functions. They would allow us to use or assess the hypothesis without any effect of those additional assumptions. We also study the energy spectra and the two-point correlations of the rate of momentum transfer and of the rate of energy dissipation.

2003 ◽  
Vol 208 ◽  
pp. 467-468
Author(s):  
Naoki Yoshida ◽  
Takashi Hamana ◽  
Yasushi Suto ◽  
August Evrard

We present a phenomenological model to predict the clustering of dark matter halos on the light-cone. The model is constructed by combining several existing theoretical models. We test our model against the Hubble Volume N-body simulation and examine its validity. A good agreement is found in two-point correlation functions of dark matter halos between our model predictions and measurements from the simulation. The model is quite general and thus can be applied to a wider range of astrophysical objects, such as galaxies and quasars.


1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
D. Chicherin ◽  
J. M. Henn ◽  
E. Sokatchev ◽  
K. Yan

Abstract We present a method for calculating event shapes in QCD based on correlation functions of conserved currents. The method has been previously applied to the maximally supersymmetric Yang-Mills theory, but we demonstrate that supersymmetry is not essential. As a proof of concept, we consider the simplest example of a charge-charge correlation at one loop (leading order). We compute the correlation function of four electromagnetic currents and explain in detail the steps needed to extract the event shape from it. The result is compared to the standard amplitude calculation. The explicit four-point correlation function may also be of interest for the CFT community.


Author(s):  
Naonori S Sugiyama ◽  
Shun Saito ◽  
Florian Beutler ◽  
Hee-Jong Seo

Abstract We establish a practical method for the joint analysis of anisotropic galaxy two- and three-point correlation functions (2PCF and 3PCF) on the basis of the decomposition formalism of the 3PCF using tri-polar spherical harmonics. We perform such an analysis with MultiDark Patchy mock catalogues to demonstrate and understand the benefit of the anisotropic 3PCF. We focus on scales above 80 h−1 Mpc, and use information from the shape and the baryon acoustic oscillation (BAO) signals of the 2PCF and 3PCF. We also apply density field reconstruction to increase the signal-noise ratio of BAO in the 2PCF measurement, but not in the 3PCF measurement. In particular, we study in detail the constraints on the angular diameter distance and the Hubble parameter. We build a model of the bispectrum or 3PCF that includes the nonlinear damping of the BAO signal in redshift space. We carefully account for various uncertainties in our analysis including theoretical models of the 3PCF, window function corrections, biases in estimated parameters from the fiducial values, the number of mock realizations to estimate the covariance matrix, and bin size. The joint analysis of the 2PCF and 3PCF monopole and quadrupole components shows a $30\%$ and $20\%$ improvement in Hubble parameter constraints before and after reconstruction of the 2PCF measurements, respectively, compared to the 2PCF analysis alone. This study clearly shows that the anisotropic 3PCF increases cosmological information from galaxy surveys and encourages further development of the modeling of the 3PCF on smaller scales than we consider.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
D. Rodriguez-Gomez ◽  
J.G. Russo

Abstract We compute thermal 2-point correlation functions in the black brane AdS5 background dual to 4d CFT’s at finite temperature for operators of large scaling dimension. We find a formula that matches the expected structure of the OPE. It exhibits an exponentiation property, whose origin we explain. We also compute the first correction to the two-point function due to graviton emission, which encodes the proper time from the event horizon to the black hole singularity.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract Based on the spectrum identified in our earlier work [1], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the Q-state Potts model. Crucial in our approach is the existence of “interchiral conformal blocks”, which arise from the degeneracy of fields with conformal weight hr,1, with r ∈ ℕ*, and are related to the underlying presence of the “interchiral algebra” introduced in [2]. We also find evidence for the existence of “renormalized” recursions, replacing those that follow from the degeneracy of the field $$ {\Phi}_{12}^D $$ Φ 12 D in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Christopher P. Herzog ◽  
Abhay Shrestha

Abstract This paper is designed to be a practical tool for constructing and investigating two-point correlation functions in defect conformal field theory, directly in physical space, between any two bulk primaries or between a bulk primary and a defect primary, with arbitrary spin. Although geometrically elegant and ultimately a more powerful approach, the embedding space formalism gets rather cumbersome when dealing with mixed symmetry tensors, especially in the projection to physical space. The results in this paper provide an alternative method for studying two-point correlation functions for a generic d-dimensional conformal field theory with a flat p-dimensional defect and d − p = q co-dimensions. We tabulate some examples of correlation functions involving a conserved current, an energy momentum tensor and a Maxwell field strength, while analysing the constraints arising from conservation and the equations of motion. A method for obtaining bulk-to-defect correlators is also explained. Some explicit examples are considered: free scalar theory on ℝp× (ℝq/ℤ2) and a free four dimensional Maxwell theory on a wedge.


1993 ◽  
Vol 08 (09) ◽  
pp. 851-859 ◽  
Author(s):  
M. YU. LASHKEVICH

We consider a coset construction of minimal models. We define it rigorously and prove that it gives superconformal minimal models. This construction allows us to build all primary fields of superconformal models and to calculate their tree-point correlation functions.


Sign in / Sign up

Export Citation Format

Share Document