scholarly journals Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel

2017 ◽  
Vol 823 ◽  
pp. 100-133 ◽  
Author(s):  
J.-P. Mollicone ◽  
F. Battista ◽  
P. Gualtieri ◽  
C. M. Casciola

Turbulent flow separation induced by a protuberance on one of the walls of an otherwise planar channel is investigated using direct numerical simulations. Different bulge geometries and Reynolds numbers – with the highest friction Reynolds number simulation reaching a peak of $Re_{\unicode[STIX]{x1D70F}}=900$ – are addressed to understand the effect of the wall curvature and of the Reynolds number on the dynamics of the recirculating bubble behind the bump. Global quantities reveal that most of the drag is due to the form contribution, whilst the friction contribution does not change appreciably with respect to an equivalent planar channel flow. The size and position of the separation bubble strongly depends on the bump shape and the Reynolds number. The most bluff geometry has a larger recirculation region, whilst the Reynolds number increase results in a smaller recirculation bubble and a shear layer more attached to the bump. The position of the reattachment point only depends on the Reynolds number, in agreement with experimental data available in the literature. Both the mean and the turbulent kinetic energy equations are addressed in such non-homogeneous conditions revealing a non-trivial behaviour of the energy fluxes. The energy introduced by the pressure drop follows two routes: part of it is transferred towards the walls to be dissipated and part feeds the turbulent production hence the velocity fluctuations in the separating shear layer. Spatial energy fluxes transfer the kinetic energy into the recirculation bubble and downstream near the wall where it is ultimately dissipated. Consistently, anisotropy concentrates at small scales near the walls irrespective of the value of the Reynolds number. In the bulk flow and in the recirculation bubble, isotropy is restored at small scales and the isotropy recovery rate is controlled by the Reynolds number. Anisotropy invariant maps are presented, showing the difficulty in developing suitable turbulence models to predict separated turbulent flow dynamics. Results shed light on the processes of production, transfer and dissipation of energy in this relatively complex turbulent flow where non-homogeneous effects overwhelm the classical picture of wall-bounded turbulent flows which typically exploits streamwise homogeneity.

1997 ◽  
Vol 330 ◽  
pp. 349-374 ◽  
Author(s):  
HUNG LE ◽  
PARVIZ MOIN ◽  
JOHN KIM

Turbulent flow over a backward-facing step is studied by direct numerical solution of the Navier–Stokes equations. The simulation was conducted at a Reynolds number of 5100 based on the step height h and inlet free-stream velocity, and an expansion ratio of 1.20. Temporal behaviour of spanwise-averaged pressure fluctuation contours and reattachment length show evidence of an approximate periodic behaviour of the free shear layer with a Strouhal number of 0.06. The instantaneous velocity fields indicate that the reattachment location varies in the spanwise direction, and oscillates about a mean value of 6.28h. Statistical results show excellent agreement with experimental data by Jovic & Driver (1994). Of interest are two observations not previously reported for the backward-facing step flow: (a) at the relatively low Reynolds number considered, large negative skin friction is seen in the recirculation region; the peak |Cf| is about 2.5 times the value measured in experiments at high Reynolds numbers; (b) the velocity profiles in the recovery region fall below the universal log-law. The deviation of the velocity profile from the log-law indicates that the turbulent boundary layer is not fully recovered at 20 step heights behind the separation.The budgets of all Reynolds stress components have been computed. The turbulent kinetic energy budget in the recirculation region is similar to that of a turbulent mixing layer. The turbulent transport term makes a significant contribution to the budget and the peak dissipation is about 60% of the peak production. The velocity–pressure gradient correlation and viscous diffusion are negligible in the shear layer, but both are significant in the near-wall region. This trend is seen throughout the recirculation and reattachment region. In the recovery region, the budgets show that effects of the free shear layer are still present.


1989 ◽  
Vol 111 (4) ◽  
pp. 464-471 ◽  
Author(s):  
M. Stieglmeier ◽  
C. Tropea ◽  
N. Weiser ◽  
W. Nitsche

This study examines the flow field in three axisymmetric expansions having diffuser half-angles of 14, 18, and 90 deg, respectively. Velocity measurements were performed at a Reynolds number of Re = 1.56 × 104 using a single component LDA operated in forward scatter. The test facility was refractive index matched, allowing measurement of the velocities U, V, W, u2, v2, w2, uv and uw upstream of, and throughout the entire recirculation region. The results indicate that the diffuser geometry influences the separated shear layer appreciably over the entire length of the diffuser section. The production of turbulence immediately after separation is much higher in the case of the 14 and 18 deg diffuser compared to the 90 deg expansion, leading to higher diffusion rates in the separated shear layer, and hence earlier reattachment of the shear layer.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Paul Ziadé ◽  
Mark A. Feero ◽  
Philippe Lavoie ◽  
Pierre E. Sullivan

The shear layer development for a NACA 0025 airfoil at a low Reynolds number was investigated experimentally and numerically using large eddy simulation (LES). Two angles of attack (AOAs) were considered: 5 deg and 12 deg. Experiments and numerics confirm that two flow regimes are present. The first regime, present for an angle-of-attack of 5 deg, exhibits boundary layer reattachment with formation of a laminar separation bubble. The second regime consists of boundary layer separation without reattachment. Linear stability analysis (LSA) of mean velocity profiles is shown to provide adequate agreement between measured and computed growth rates. The stability equations exhibit significant sensitivity to variations in the base flow. This highlights that caution must be applied when experimental or computational uncertainties are present, particularly when performing comparisons. LSA suggests that the first regime is characterized by high frequency instabilities with low spatial growth, whereas the second regime experiences low frequency instabilities with more rapid growth. Spectral analysis confirms the dominance of a central frequency in the laminar separation region of the shear layer, and the importance of nonlinear interactions with harmonics in the transition process.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


1988 ◽  
Vol 190 ◽  
pp. 491-512 ◽  
Author(s):  
M. F. Unal ◽  
D. Rockwell

Vortex shedding from a circular cylinder is examined over a tenfold range of Reynolds number, 440 ≤ Re ≤ 5040. The shear layer separating from the cylinder shows, to varying degrees, an exponential variation of fluctuating kinetic energy with distance downstream of the cylinder. The characteristics of this unsteady shear layer are interpreted within the context of an absolute instability of the near wake. At the trailing-end of the cylinder, the fluctuation amplitude of the instability correlates well with previously measured values of mean base pressure. Moreover, this amplitude follows the visualized vortex formation length as Reynolds number varies. There is a drastic decrease in this near-wake fluctuation amplitude in the lower range of Reynolds number and a rapid increase at higher Reynolds number. These trends are addressed relative to the present, as well as previous, observations.


1991 ◽  
Vol 226 ◽  
pp. 475-496 ◽  
Author(s):  
F. T. Pinho ◽  
J. H. Whitelaw

Measurements of wall pressure, and mean and r.m.s. velocities of the confined flow about a disk of 50 % area blockage have been carried out for two Newtonian fluids and four concentrations of a shear-thinning weakly elastic polymer in aqueous solution encompassing a Reynolds-number range from 220 to 138000. The flows of Newtonian and non-Newtonian fluids were found to be increasingly dependent on Reynolds numbers below 50000, with a decrease in the length of the recirculation region and dampening of the normal Reynolds stresses. At Reynolds numbers less than 25000, the recirculation bubble lengthened and all turbulence components were suppressed with increased polymer concentration so that, at a Reynolds number of 8000, the maximum values of turbulent kinetic energy were 35 and 45% lower than that for water, with 0.2% and 0.4% solutions of the polymer. Non-Newtonian effects were found to be important in regions of low local strain rates in low-Reynolds-number flows, especially inside the recirculation bubble and close to the shear layer, and are represented by both an increase in viscous diffusion and a decrease in turbulent diffusion to, respectively, 6% and 18% of the largest term of the momentum balance with a 0.4 % polymer solution at a Reynolds number of 7700. The asymmetry and unsteadiness of the flow at Reynolds numbers between 400 and 6000 is shown to be an aerodynamic effect which increases in range and amplitude with the more concentrated polymer solutions.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Brian R. McAuliffe ◽  
Metin I. Yaras

Through experiments using two-dimensional particle-image velocimetry (PIV), this paper examines the nature of transition in a separation bubble and manipulations of the resultant breakdown to turbulence through passive means of control. An airfoil was used that provides minimal variation in the separation location over a wide operating range, with various two-dimensional modifications made to the surface for the purpose of manipulating the transition process. The study was conducted under low-freestream-turbulence conditions over a flow Reynolds number range of 28,000–101,000 based on airfoil chord. The spatial nature of the measurements has allowed identification of the dominant flow structures associated with transition in the separated shear layer and the manipulations introduced by the surface modifications. The Kelvin–Helmholtz (K-H) instability is identified as the dominant transition mechanism in the separated shear layer, leading to the roll-up of spanwise vorticity and subsequent breakdown into small-scale turbulence. Similarities with planar free-shear layers are noted, including the frequency of maximum amplification rate for the K-H instability and the vortex-pairing phenomenon initiated by a subharmonic instability. In some cases, secondary pairing events are observed and result in a laminar intervortex region consisting of freestream fluid entrained toward the surface due to the strong circulation of the large-scale vortices. Results of the surface-modification study show that different physical mechanisms can be manipulated to affect the separation, transition, and reattachment processes over the airfoil. These manipulations are also shown to affect the boundary-layer losses observed downstream of reattachment, with all surface-indentation configurations providing decreased losses at the three lowest Reynolds numbers and three of the five configurations providing decreased losses at the highest Reynolds number. The primary mechanisms that provide these manipulations include: suppression of the vortex-pairing phenomenon, which reduces both the shear-layer thickness and the levels of small-scale turbulence; the promotion of smaller-scale turbulence, resulting from the disturbances generated upstream of separation, which provides quicker transition and shorter separation bubbles; the elimination of the separation bubble with transition occurring in an attached boundary layer; and physical disturbance, downstream of separation, of the growing instability waves to manipulate the vortical structures and cause quicker reattachment.


2017 ◽  
Vol 815 ◽  
pp. 1-25 ◽  
Author(s):  
Vladimir Statnikov ◽  
Matthias Meinke ◽  
Wolfgang Schröder

A reduced-order analysis based on optimized dynamic mode decomposition (DMD) is performed on the turbulent wake of a generic axisymmetric space launcher configuration computed via a zonal large-eddy simulation at the free stream Mach number $Ma_{\infty }=0.8$ and the Reynolds number based on the main body diameter $Re_{D}=6\times 10^{5}$ to investigate the buffet phenomenon. The transonic wake is characterized by an unsteady recirculation region occurring around the nozzle due to the separation of the turbulent boundary layer at the main body shoulder and subsequent dynamic interaction of the unstable free-shear layer with the nozzle surface. This results in strongly periodic and antisymmetric wall pressure fluctuations, for which three distinct frequency ranges are identified using conventional spectral analysis, i.e. $Sr_{D}\approx 0.1$, $Sr_{D}\approx 0.2$ and $Sr_{D}\approx 0.35$. For the spatially integrated side (buffet) loads on the nozzle, the second range is found to be energetically most dominant. To clarify the origin of the detected wake dynamics, the underlying spatio-temporal coherent modes are extracted using DMD. Subsequent analysis of the reduced-order modelled flow field based on the identified DMD modes reveals that at $Sr_{D}\approx 0.1$ a longitudinal cross-pumping motion of the separation bubble takes place, caused by a harmonic antisymmetric oscillation of the main recirculation vortex in the streamwise direction. At $Sr_{D}\approx 0.2$, a cross-flapping motion of the shear layer is determined, triggered by antisymmetric vortex shedding which is in phase with the cross-pumping motion such that it occurs at twice the frequency value. The last range of $Sr_{D}\approx 0.35$ is attributed to a swinging motion of the shear layer caused by a higher harmonic of the vortex shedding mode. Conclusively, the controversial aspect of the true three-dimensional shape of the antisymmetric mode at $Sr_{D}\approx 0.2$ that dominates the buffet phenomenon is scrutinized. Inclined elongated closed-loop vortices are identified that are shed in alternating sequence from azimuthally opposite positions in a longitudinal plane of symmetry that changes its momentary orientation irregularly, maintaining an axisymmetric time-averaged field and spatially isotropic buffet loads.


1997 ◽  
Vol 21 (4) ◽  
pp. 371-387
Author(s):  
D.A Billenness ◽  
N. Djilali ◽  
E. Zeidan

Laminar flow over a square rib placed in a fully developed channel flow is investigated over the Reynolds number range 80-350. The effect of Reynolds number on the flow and the variation of the primary reattachment length with Reynolds number are investigated using flow visualization and laser-Doppler velocimetry. The primary recirculation region length is found to increase in a slightly non-linear fashion with Reynolds number up to Reh = 250, at which point shear layer instabilities first appear downstream of the rib. Increasing the Reynolds number further, first results in continuing growth of the separation bubble, and then for Reh ≳ 300, in the appearance of three dimensional vortices and gradual shortening of the bubble. The measurements are complemented by two- and three-dimensional numerical simulations using a finite volume method with a high-order descretization scheme. These simulations yield excellent agreement with the measured reattachment lengths and velocity profiles over the steady laminar flow régime.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Robert Muyshondt ◽  
Thien Nguyen ◽  
Y. A. Hassan ◽  
N. K. Anand

Abstract This work experimentally investigated the flow phenomena and vortex structures in the wake of a sphere located in a water loop at Reynolds numbers of Re = 850, 1,250, and 1,700. Velocity fields in the wake region were obtained by applying the time-resolved stereoscopic particle image velocimetry (TR-SPIV) technique. From the acquired TR-SPIV velocity vector fields, the statistical values of mean and fluctuating velocities were computed. Spectral analysis, two-point velocity–velocity cross-correlation, proper orthogonal decomposition (POD) and vortex identification analyses were also performed. The velocity fields show a recirculation region that decreases in length with an increase of Reynolds numbers. The power spectra from the spectral analysis had peaks corresponding to a Strouhal number of St = 0.2, which is a value commonly found in the literature studies of flow over a sphere. The two-point cross-correlation analysis revealed elliptical structures in the wake, with estimated integral length scales ranging between 12% and 63% of the sphere diameter. The POD analysis revealed the statistically dominant flow structures that captured the most flow kinetic energy. It is seen that the flow kinetic energy captured in the smaller scale flow structures increased as Reynolds number increased. The POD modes contained smaller structure as the Reynolds number increased and as mode order increased. In addition, spectral analysis performed on the POD temporal coefficients revealed peaks corresponding to St = 0.2, similar to the spectral analysis on the fluctuating velocity. The ability of POD to produce low-order reconstructions of the flow was also utilized to facilitate vortex identification analysis, which identified average vortex sizes of 0.41D for Re1, 0.33D for Re2, and 0.32D for Re3.


Sign in / Sign up

Export Citation Format

Share Document