Onset of global instability in low-density jets

2017 ◽  
Vol 828 ◽  
Author(s):  
Yuanhang Zhu ◽  
Vikrant Gupta ◽  
Larry K. B. Li

In low-density axisymmetric jets, the onset of global instability is known to depend on three control parameters, namely the jet-to-ambient density ratio $S$, the initial momentum thickness $\unicode[STIX]{x1D703}_{0}$ and the Reynolds number $Re$. For sufficiently low values of $S$ and $\unicode[STIX]{x1D703}_{0}$, these jets bifurcate from a steady state (a fixed point) to a self-excited oscillatory state (a limit cycle) when $Re$ increases above a critical value corresponding to the Hopf point, $Re_{H}$. In the literature, this Hopf bifurcation is often regarded as supercritical. In this experimental study, however, we find that under some conditions, there exists a hysteretic bistable region at $Re_{SN}<Re<Re_{H}$, where $Re_{SN}$ denotes a saddle-node point. This shows that, contrary to expectations, the Hopf bifurcation can also be subcritical, which we explore by evaluating the coefficients of a truncated Landau model. The existence of subcritical bifurcations implies the potential for triggering and the need for weakly nonlinear analyses to be performed to at least fifth order if one is to be able to predict saturation and bistability. We conclude by proposing a universal scaling for $Re_{H}$ in terms of $S$ and $\unicode[STIX]{x1D703}_{0}$. This scaling, which is insensitive to the super/subcritical nature of the bifurcations, can be used to predict the onset of self-excited oscillations, providing further evidence to support Hallberg & Strykowski’s concept (J. Fluid Mech., vol. 569, 2006, pp. 493–507) of universal global modes in low-density jets.

2016 ◽  
Vol 26 (09) ◽  
pp. 1650149 ◽  
Author(s):  
Chaoxiong Du ◽  
Yirong Liu ◽  
Wentao Huang

Our work is concerned with a class of three-dimensional quadratic systems with two symmetric singular points which can yield ten small limit cycles. The method used is singular value method, we obtain the expressions of the first five focal values of the two singular points that the system has. Both singular symmetric points can be fine foci of fifth order at the same time. Moreover, we obtain that each one bifurcates five small limit cycles under a certain coefficient perturbed condition, consequently, at least ten limit cycles can appear by simultaneous Hopf bifurcation.


2019 ◽  
Vol 116 (14) ◽  
pp. 6665-6672 ◽  
Author(s):  
Xuan Zhang ◽  
Andrey Vyatskikh ◽  
Huajian Gao ◽  
Julia R. Greer ◽  
Xiaoyan Li

It has been a long-standing challenge in modern material design to create low-density, lightweight materials that are simultaneously robust against defects and can withstand extreme thermomechanical environments, as these properties are often mutually exclusive: The lower the density, the weaker and more fragile the material. Here, we develop a process to create nanoarchitected carbon that can attain specific strength (strength-to-density ratio) up to one to three orders of magnitude above that of existing micro- and nanoarchitected materials. We use two-photon lithography followed by pyrolysis in a vacuum at 900 °C to fabricate pyrolytic carbon in two topologies, octet- and iso-truss, with unit-cell dimensions of ∼2 μm, beam diameters between 261 nm and 679 nm, and densities of 0.24 to 1.0 g/cm3. Experiments and simulations demonstrate that for densities higher than 0.95 g/cm3the nanolattices become insensitive to fabrication-induced defects, allowing them to attain nearly theoretical strength of the constituent material. The combination of high specific strength, low density, and extensive deformability before failure lends such nanoarchitected carbon to being a particularly promising candidate for applications under harsh thermomechanical environments.


2013 ◽  
Vol 2013 ◽  
pp. 1-24 ◽  
Author(s):  
Mohammed Rizwan Sadiq Iqbal

The effect of air shear on the hydromagnetic instability is studied through (i) linear stability, (ii) weakly nonlinear theory, (iii) sideband stability of the filtered wave, and (iv) numerical integration of the nonlinear equation. Additionally, a discussion on the equilibria of a truncated bimodal dynamical system is performed. While the linear and weakly nonlinear analyses demonstrate the stabilizing (destabilizing) tendency of the uphill (downhill) shear, the numerics confirm the stability predictions. They show that (a) the downhill shear destabilizes the flow, (b) the time taken for the amplitudes corresponding to the uphill shear to be dominated by the one corresponding to the zero shear increases with magnetic fields strength, and (c) among the uphill shear-induced flows, it takes a long time for the wave amplitude corresponding to small shear values to become smaller than the one corresponding to large shear values when the magnetic field intensity increases. Simulations show that the streamwise and transverse velocities increase when the downhill shear acts in favor of inertial force to destabilize the flow mechanism. However, the uphill shear acts oppositely. It supports the hydrostatic pressure and magnetic field in enhancing films stability. Consequently, reduced constant flow rates and uniform velocities are observed.


2013 ◽  
Vol 2013 (0) ◽  
pp. 97-98
Author(s):  
Hideshi ISHIDA ◽  
Takayuki KURODA ◽  
Seitaro SUGIMURA ◽  
Genta KAWAHARA

2012 ◽  
Vol 707 ◽  
pp. 24-36 ◽  
Author(s):  
David Fabre ◽  
Joël Tchoufag ◽  
Jacques Magnaudet

AbstractWe consider the steady motion of disks of various thicknesses in a weakly viscous flow, in the case where the angle of incidence $\ensuremath{\alpha} $ (defined as that between the disk axis and its velocity) is small. We derive the structure of the steady flow past the body and the associated hydrodynamic force and torque through a weakly nonlinear expansion of the flow with respect to $\ensuremath{\alpha} $. When buoyancy drives the body motion, we obtain a solution corresponding to an oblique path with a non-zero incidence by requiring the torque to vanish and the hydrodynamic and net buoyancy forces to balance each other. This oblique solution is shown to arise through a bifurcation at a critical Reynolds number ${\mathit{Re}}^{\mathit{SO}} $ which does not depend upon the body-to-fluid density ratio and is distinct from the critical Reynolds number ${\mathit{Re}}^{\mathit{SS}} $ corresponding to the steady bifurcation of the flow past the body held fixed with $\ensuremath{\alpha} = 0$. We then apply the same approach to the related problem of a sphere that weakly rotates about an axis perpendicular to its path and show that an oblique path sets in at a critical Reynolds number ${\mathit{Re}}^{\mathit{SO}} $ slightly lower than ${\mathit{Re}}^{\mathit{SS}} $, in agreement with available numerical studies.


2007 ◽  
Vol 19 (1) ◽  
pp. 014102 ◽  
Author(s):  
M. P. Hallberg ◽  
V. Srinivasan ◽  
P. Gorse ◽  
P. J. Strykowski

2011 ◽  
Vol 10 (3) ◽  
pp. 767-784 ◽  
Author(s):  
Amit Gupta ◽  
Ranganathan Kumar

AbstractA two-dimensional lattice Boltzmann model has been employed to simulate the impingement of a liquid drop on a dry surface. For a range of Weber number, Reynolds number and low density ratios, multiple phases leading to breakup have been obtained. An analytical solution for breakup as function of Reynolds and Weber number based on the conservation of energy is shown to match well with the simulations. At the moment breakup occurs, the spread diameter is maximum; it increases with Weber number and reaches an asymptotic value at a density ratio of 10. Droplet breakup is found to be more viable for the case when the wall is non-wetting or neutral as compared to a wetting surface. Upon breakup, the distance between the daughter droplets is much higher for the case with a non-wetting wall, which illustrates the role of the surface interactions in the outcome of the impact.


2020 ◽  
Vol 15 ◽  

Discovered experimentally by Russell and described theoretically by Korteweg and de Vries, KdV equation has been a nonlinear evolution equation describing the propagation of weakly dispersive and weakly nonlinear waves. This equation received a lot of attention from mathematical and physical communities as an integrable equation. The objectives of this paper are: first, providing a rigorous mathematical derivation of an extended KdV equations, one on the velocity, other on the surface elevation, next, solving explicitly the one on the velocity. In order to derive rigorously these equations, we will refer to the definition of consistency, and to find an explicit solution for this equation, we will use the sine-cosine method. As a result of this work, a rigorous justification of the extended Kdv equation of fifth order will be done, and an explicit solution of this equation will be derived.


Sign in / Sign up

Export Citation Format

Share Document