scholarly journals Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows

2021 ◽  
Vol 914 ◽  
Author(s):  
Patricio Clark Di Leoni ◽  
Tamer A. Zaki ◽  
George Karniadakis ◽  
Charles Meneveau

Abstract

Author(s):  
Mirko Baratta ◽  
Andrea E. Catania ◽  
Stefano d’Ambrosio

A general form of the stress-strain constitutive relation was introduced for the application of two nonlinear k-ε turbulence models, namely, the algebraic Reynolds stress model of Gatski and Speziale (1993, “On Explicit Algebraic Stress Models for Complex Turbulent Flows,” J. Fluid Mech., 254, pp. 59–78) and the cubic model of Lien et al. (1996, “Low Reynolds Number Eddy-Viscosity Modeling Based on Non-Linear Stress-Strain/Vorticity Relations,” Proceedings of Third Symposium on Engineering Turbulence Modeling and Measurements, Crete, Greece), to the numerical analysis of flow fields in a test engine with flat-piston and bowl-in-piston arrangements, under swirling and no-swirling flow motored conditions. The model capabilities in capturing turbulent flow features were compared to those of the upgraded linear RNG k-ε model, which was previously indicated as a good compromise between accuracy and computational cost. Evaluations were made on the basis of the predicted flow evolution throughout the whole engine cycle, as well as of the comparison between the numerical and experimental results. Furthermore, the effect of the stress-strain relationship on the predicted averaged turbulence quantities and anisotropy-invariant values were examined, in addition to the sensitivity of the nonlinear models to the mesh quality. Finally, prospects concerning possible improvements of turbulence eddy-viscosity models were presented. The predictions were made by a newly developed CFD code embedding various accuracy-order finite-volume discretization schemes. Modified wall boundary conditions with respect to the conventional logarithmic-function approach were used, so as to make the local equilibrium hypothesis virtually ineffective.


2016 ◽  
Vol 26 (5) ◽  
pp. 1380-1390
Author(s):  
Jianying Jiao ◽  
Ye Zhang

Purpose – The purpose of this paper is to propose three modified subgrid-scale (SGS) eddy-viscosity models to improve their original eddy-viscosity models (the Smagorinsky model (SM), the mixed-scale model (MSM), and the wall-adapted local eddy-viscosity model (WALE)) in the simulation of turbulent flows in near-wall region. Design/methodology/approach – The subgrid viscosity is related to the norm of strain rate tensor of the smallest resolved scales, instead of the norm of the resolved strain rate tensor of the large scales. Findings – All the SGS viscosity of the modified eddy-viscosity models (small-large model, modified MSM, and modified WALE) is closer to y+3 behavior than those of the original eddy-viscosity models (SM, MSM, and WALE) near the wall. Originality/value – The norm of strain rate tensor of the smallest scales used in eddy-viscosity models, instead of the norm of strain rate tensor, makes the eddy viscosity in near-wall region approach to zero in a physical sense.


Author(s):  
C. Henoch ◽  
Martin Hoffert ◽  
A. Baron ◽  
D. Klaiman ◽  
Semion Sukoriansky ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


2015 ◽  
Vol 766 ◽  
pp. 337-367 ◽  
Author(s):  
Bartosz Protas ◽  
Bernd R. Noack ◽  
Jan Östh

AbstractWe propose a variational approach to the identification of an optimal nonlinear eddy viscosity as a subscale turbulence representation for proper orthogonal decomposition (POD) models. The ansatz for the eddy viscosity is given in terms of an arbitrary function of the resolved fluctuation energy. This function is found as a minimizer of a cost functional measuring the difference between the target data coming from a resolved direct or large-eddy simulation of the flow and its reconstruction based on the POD model. The optimization is performed with a data-assimilation approach generalizing the 4D-VAR method. POD models with optimal eddy viscosities are presented for a 2D incompressible mixing layer at $\mathit{Re}=500$ (based on the initial vorticity thickness and the velocity of the high-speed stream) and a 3D Ahmed body wake at $\mathit{Re}=300\,000$ (based on the body height and the free-stream velocity). The variational optimization formulation elucidates a number of interesting physical insights concerning the eddy-viscosity ansatz used. The 20-dimensional model of the mixing-layer reveals a negative eddy-viscosity regime at low fluctuation levels which improves the transient times towards the attractor. The 100-dimensional wake model yields more accurate energy distributions as compared to the nonlinear modal eddy-viscosity benchmark proposed recently by Östh et al. (J. Fluid Mech., vol. 747, 2014, pp. 518–544). Our methodology can be applied to construct quite arbitrary closure relations and, more generally, constitutive relations optimizing statistical properties of a broad class of reduced-order models.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


Sign in / Sign up

Export Citation Format

Share Document