Bistabilities in two parallel Kármán wakes

2021 ◽  
Vol 929 ◽  
Author(s):  
Chengjiao Ren ◽  
Liang Cheng ◽  
Chengwang Xiong ◽  
Feifei Tong ◽  
Tingguo Chen

Bistabilities of two equilibrium states discovered in the coupled side-by-side Kármán wakes are investigated through Floquet analysis and direct numerical simulation (DNS) with different initial conditions over a range of gap-to-diameter ratio ( $g^*= 0.2\text {--}3.5$ ) and Reynolds number ( $Re = 47\text {--}100$ ). Two bistabilities are found in the transitional $g^*-Re$ regions from in-phase (IP) to anti-phase (AP) vortex shedding states. By initialising the flow in DNS with zero initial conditions, the flow in the first bistable region (i.e. bistable IP/FF $_C$ at $g^*= 1.4 \text {--} 2.0$ , where FF $_C$ denotes the conditional flip-flop flow) attains flip-flop (FF) flow, it settles into the IP state by initialising the flow with an IP flow. The second bistability is observed between cylinder-scale IP and AP states at large $g^*$ ( $=$  2.0–3.5). The transition from the FF $_C$ to IP is dependent on initial conditions and irreversible over the parameter space, meaning that the flow cannot revert back to the FF $_C$ state once it jumps to the IP state irrespective of the direction of $Re$ variations. Its counterpart for the bistable IP/AP state is reversible. We also found that the FF $_C$ flow in the first bistable region is primarily bifurcated from synchronised AP with cluster-scale features, possibly because the cluster-scale AP flow is inherently unstable to FF flow instabilities. It is demonstrated that the irreversible bistability exists in other interacting wakes around multiple cylinders. A good understanding of flow bistabilities is pivotal to flow control applications and the interpretation of desynchronised flow features observed at high $Re$ values.

Author(s):  
S. Nagaya ◽  
R. E. Baddour

CFD simulations of crossflows around a 2-D circular cylinder and the resulting vortex shedding from the cylinder are conducted in the present study. The capability of the CFD solver for vortex shedding simulation from a circular cylinder is validated in terms of the induced drag and lifting forces and associated Strouhal numbers computations. The validations are done for uniform horizontal fluid flows at various Reynolds numbers in the range 103 to 5×105. Crossflows around the circular cylinder beneath a free surface are also simulated in order to investigate the characteristics of the interaction between vortex shedding and a free surface at Reynolds number 5×105. The influence of the presence of the free surface on the vortex shedding due to the cylinder is discussed.


Author(s):  
Antoine Placzek ◽  
Jean-Franc¸ois Sigrist ◽  
Aziz Hamdouni

The numerical simulation of the flow past a circular cylinder forced to oscillate transversely to the incident stream is presented here for a fixed Reynolds number equal to 100. The 2D Navier-Stokes equations are solved with a classical Finite Volume Method with an industrial CFD code which has been coupled with a user subroutine to obtain an explicit staggered procedure providing the cylinder displacement. A preliminary work is conducted in order to check the computation of the wake characteristics for Reynolds numbers smaller than 150. The Strouhal frequency fS, the lift and drag coefficients CL and CD are thus controlled among other parameters. The simulations are then performed with forced oscillations f0 for different frequency rations F = f0/fS in [0.50–1.50] and an amplitude A varying between 0.25 and 1.25. The wake characteristics are analysed using the time series of the fluctuating aerodynamic coefficients and their FFT. The frequency content is then linked to the shape of the phase portrait and to the vortex shedding mode. By choosing interesting couples (A,F), different vortex shedding modes have been observed, which are similar to those of the Williamson-Roshko map.


2011 ◽  
Vol 110-116 ◽  
pp. 4719-4722
Author(s):  
V. Parthiban ◽  
Ashwin Russelle

In order to predict a turbulent flow around a triangular cylinder a high Reynolds number of 45000 is done in the numerical simulation. In this simulation both steady and unsteady vortex shedding is predicted and various time steps. The numerical method used in this simulation is Reynolds Stress model. For steady and unsteady solution velocity contours and velocity vector plots is to be predicted for the vortex shedding behind the triangular cylinder.


2014 ◽  
Vol 580-583 ◽  
pp. 3089-3092
Author(s):  
Rong Sheng Cao ◽  
Yuan Yuan Fang ◽  
Ling Wang

The wind load acted on ship mast at different wind angles of large Reynolds number is numerically simulated in this paper. CFX software was used to analyze the trend of constant and fluctuating forces that the mast surface suffered at different Reynolds numbers.The vortex shedding strength of the wind load around the mast was also analyzed according to the trend of Strouhal number varing with the simulated Reynolds numbers. The results show that the wind angle has an important impact on the lift, drag, and vertical force of the mast. The vertical force of the inclined side wall on the mast can not be ignored,and the angle of direction wind has great impact on the Strouhal number at different Reynolds numbers.


2014 ◽  
Vol 886 ◽  
pp. 436-439
Author(s):  
Yong Tao Wang ◽  
Zhong Min Yan ◽  
Hui Min Wang

The vortex shedding from two circular cylinders of different diameters in a tandem arrangement is numerically investigated at a Reynolds number of 100 and 150. The studied Reynolds number based on the diameter of the downstream main cylinder. The diameter of the downstream main cylinder was kept constant, and the diameter ratio between the upstream control cylinder and the downstream one was varied from 0.1 to 1.0. The gap between the control cylinder and the main cylinder ranged from 0.1 to 4.0 times the diameter of the main cylinder. It is concluded that the gap ratio and the diameter ratio between the two cylinders have important effects on vortex shedding from two cylinders of different diameters in a tandem arrangement.


1981 ◽  
Vol 32 (1) ◽  
pp. 48-71 ◽  
Author(s):  
P.K. Stansby

SummaryA discrete-vortex representation of the wake of a circular cylinder, in which vortices are convected in a potential-flow calculation and maintain their identities unless they approach one another or a surface closely, predicts many of the unsteady flow features and is computationally more efficient than other schemes. The mean rate of shedding of vorticity is adjusted to be compatible with experiments at a high subcritical Reynolds number of 3 × 104 and the model gives reasonable predictions of separation, drag, lift, Strouhal number and vorticity loss in the formation region. The method is extended to accommodate a second cylinder and many of the surprising features which have been observed experimentally with two cylinders in a side-by-side arrangement are reproduced.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
T. Ayyappan ◽  
S. Vengadesan

The influence of the staggering position of a rotating rod on flow past a main circular cylinder is investigated numerically. The rod is rotated at a constant speed ratio of 3. The effect of the diameter ratio of the rotating rod is studied by considering two different diameter ratios. The investigation is carried out at a fixed pitch length of 1. The study is carried out for two Reynolds number, viz., 100 and 500. The momentum injection from the rod is found to alter the flow characteristics behind the main cylinder. For a certain arrangement of stagger angle and diameter ratio, the vortex shedding behind the main cylinder gets suppressed. The corresponding configuration for which minimum drag coefficient is achieved is suggested from this study.


Author(s):  
Ju Yeol You ◽  
Oh Joon Kwon

The main objective of the present study is to investigate the performance of different turbulent models for the flow simulation around a circular cylinder at a critical Reynolds number regime (Re = 8.5×105, Tu = 0.7%). To simulate the various flow features such as laminar-turbulent transition inside the boundary layer and the unsteady vortex shedding in the wake region, a hybrid RANS/LES model (SAS model) and a correlation-based transition model (γ - Reθ model) were used and the feasibilities of them for the flow simulation at a critical Reynolds number regime were demonstrated. A vertex-centered finite-volume method was adopted to discretize the incompressible Navier-Stokes equations and an unstructured mesh technique was used to discretize the computational domain. The inviscid fluxes were evaluated by using 2nd-order Roe’s FDS and the viscous fluxes were computed based on central differencing. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. To reduce the computational costs, the parallelization strategy using METIS and MPI libraries was adopted. The unsteady characteristics and time-averaged quantities of the flow fields were compared between the turbulent models. The numerical results have been also compared with experimental data. At the critical regime, turbulent models have showed quite different results due to the different abilities of each model to predict various flow features such as laminar-turbulent transition, unsteady vortex shedding.


Author(s):  
Xinxin Wang ◽  
Liuyi Huang ◽  
Yanli Tang ◽  
Fenfang Zhao ◽  
Peng Sun

Abstract The stranded rope is one of the important components of the fishery aquaculture equipment. We investigate the fluid flow through two-dimensional stranded rope by direct simulation of the Navier-Stokes equations. We show that for different kinds of stranded rope structures, there are significant differences in hydrodynamic performance. This paper established a numerical model of unsteady flow past the stranded rope based on the Navier-Stokes equation and Morison formulas to study the hydrodynamic characteristics of three-stranded rope, four-stranded rope, and seven-stranded rope, respectively. The turbulence flow was simulated using Standard k-ε model and Shear-Stress Transport k-ω (SST) model. The flow distribution strongly depends on the Reynolds number, a range of 3,900 and 30,000. With increasing Reynolds number, the alternate eddy formation and shedding were repeated behind the stranded ropes. Such parameters of hydrodynamic characteristics of multiple stranded ropes were calculated as the lift and drag coefficients, and vortex shedding frequencies. The numerical simulation results presented flow performances of different cross sections (a, b, c, d) at different Reynolds numbers. However, Reynolds number has no significant impact on the Strouhal number for the same attack angle of the stranded rope.


2013 ◽  
Vol 405-408 ◽  
pp. 3259-3262 ◽  
Author(s):  
Wei Zhang ◽  
Hui Hua Ye ◽  
Jian Hua Tao

The flow around four cylinders in a square configuration with a spacing ratio 4 and Reynolds number of 200 are investigated using lattice Boltzmann method for angles of incidence α=0 and 45º, respectively. The results show that no biased flow occurs and the flow pattern is symmetrical at α=0, and the vortex shedding exists after the upstream cylinders which is completely different from the experimental results. It is hard to explain the discrepancy at present. The phenomenon of vortex shedding in-phase observed in the experiment reappears in the numerical simulation at α=45º.


Sign in / Sign up

Export Citation Format

Share Document