scholarly journals Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear

2019 ◽  
Vol 13 (5) ◽  
pp. 1495-1511 ◽  
Author(s):  
Baptiste Journaux ◽  
Thomas Chauve ◽  
Maurine Montagnat ◽  
Andrea Tommasi ◽  
Fabrice Barou ◽  
...  

Abstract. Torsion experiments were performed in polycrystalline ice at high temperature (0.97 Tm) to reproduce the simple shear kinematics that are believed to dominate in ice streams and at the base of fast-flowing glaciers. As clearly documented more than 30 years ago, under simple shear ice develops a two-maxima c axis crystallographic preferred orientation (CPO), which evolves rapidly into a single cluster CPO with a c axis perpendicular to the shear plane. Dynamic recrystallization mechanisms that occur in both laboratory conditions and naturally deformed ice are likely candidates to explain the observed CPO evolution. In this study, we use electron backscatter diffraction (EBSD) and automatic ice texture analyzer (AITA) to characterize the mechanisms accommodating deformation, the stress and strain heterogeneities that form under torsion of an initially isotropic polycrystalline ice sample at high temperature, and the role of dynamic recrystallization in accommodating these heterogeneities. These analyses highlight an interlocking microstructure, which results from heterogeneity-driven serrated grain boundary migration, and sub-grain boundaries composed of dislocations with a [c]-component Burgers vector, indicating that strong local stress heterogeneity develops, in particular, close to grain boundaries, even at high temperature and high finite shear strain. Based on these observations, we propose that nucleation by bulging, assisted by sub-grain boundary formation and followed by grain growth, is a very likely candidate to explain the progressive disappearance of the c axis CPO cluster at low angle to the shear plane and the stability of the one normal to it. We therefore strongly support the development of new polycrystal plasticity models limiting dislocation slip on non-basal slip systems and allowing for efficient accommodation of strain incompatibilities by an association of bulging and formation of sub-grain boundaries with a significant [c] component.

2018 ◽  
Author(s):  
Baptiste Journaux ◽  
Thomas Chauve ◽  
Maurine Montagnat ◽  
Andrea Tommasi ◽  
Fabrice Barou ◽  
...  

Abstract. Torsion experiments were performed in polycrystalline ice at high temperature (0.97 ⋅ Tm) to reproduce simple shear conditions close to those encountered in ice streams and at the base of fast flowing glaciers. As well documented more than 30 years ago (Hudleston, 1977; Bouchez and Duval, 1982), under simple shear ice develops a two-maxima c-axis texture, which evolves rapidly into a single cluster texture with c-axis perpendicular to the shear plane. This evolution still lacks a physical explanation. Current viscoplastic modeling approaches on ice involving dislocation slip on multiple slip systems (basal pyramidal, and prismatic) fail to reproduce it. Dynamic recrystallization mechanisms that occur in both laboratory conditions and in natural setups are likely candidates to explain the texture evolution observed. In this study, we use Electron BackScattering Diffraction (EBSD) and Automatic Ice Texture Analyzer (AITA) to characterize the mechanisms accommodating deformation, the stress and strain heterogeneities that form under torsion of an initially isotropic polycrystalline ice sample at high temperature, and the role of dynamic recrystallization in accommodating these heterogeneities. These analyses highlight an interlocking microstructure, which results from heterogeneity-driven serrated grain boundary migration, and sub-grain boundaries composed by dislocations with [c]-component Burgers vector, indicating that strong local stress heterogeneity develops, even at high temperature and high finite shear strain. Based on these observations, we propose that that nucleation by bulging, assisted by sub-grain boundary formation, is a very likely candidate to explain the progressive disappearance of the texture cluster at low angle to the shear plane and the stability of the one normal to it. We therefore strongly support the development of new models limiting dislocation slip on non-basal slip system and allowing for efficient polygonization by an association of bulging and formation of sub-grain boundaries with a significant [c]-component.


2018 ◽  
Vol 64 (246) ◽  
pp. 669-674
Author(s):  
COLIN M. SAYERS

ABSTRACTMeasured elastic stiffnesses of ice polycrystals decrease with increasing temperature due to a decrease in grain boundary stiffness with increasing temperature. In this paper, we represent grain boundaries as imperfectly bonded interfaces, across which traction is continuous, but displacement may be discontinuous. We express the additional compliance due to grain boundaries in terms of a second-rank and a fourth-rank tensor, which quantify the effect on elastic wave velocities of the orientation distribution as well as the normal and shear compliances of the grain boundaries. Measurement of the elastic stiffnesses allows determination of the components of these tensors. Application of the method to resonant ultrasound spectroscopy measurements made on ice polycrystals enables determination of the ratio BN/BS of the normal to shear compliance of the grain boundaries, which are found to be more compliant in shear than in compression. The ratio BN/BS is small at low temperatures, but increases as temperature increases, implying that the normal compliance increases relative to the shear compliance as temperature increases.


Minerals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Caroline Bollinger ◽  
Billy Nzogang ◽  
Alexandre Mussi ◽  
Jérémie Bouquerel ◽  
Dmitri Molodov ◽  
...  

Plastic deformation of peridotites in the mantle involves large strains. Orthorhombic olivine does not have enough slip systems to satisfy the von Mises criterion, leading to strong hardening when polycrystals are deformed at rather low temperatures (i.e., below 1200 °C). In this study, we focused on the recovery mechanisms involving grain boundaries and recrystallization. We investigated forsterite samples deformed at large strains at 1100 °C. The deformed microstructures were characterized by transmission electron microscopy using orientation mapping techniques (ACOM-TEM). With this technique, we increased the spatial resolution of characterization compared to standard electron backscatter diffraction (EBSD) maps to further decipher the microstructures at nanoscale. After a plastic strain of 25%, we found pervasive evidence for serrated grain and subgrain boundaries. We interpreted these microstructural features as evidence of occurrences of grain boundary migration mechanisms. Evaluating the driving forces for grain/subgrain boundary motion, we found that the surface tension driving forces were often greater than the strain energy driving force. At larger strains (40%), we found pervasive evidence for discontinuous dynamic recrystallization (dDRX), with nucleation of new grains at grain boundaries. The observations reveal that subgrain migration and grain boundary bulging contribute to the nucleation of new grains. These mechanisms are probably critical to allow peridotitic rocks to achieve large strains under a steady-state regime in the lithospheric mantle.


2012 ◽  
Vol 58 (207) ◽  
pp. 11-22 ◽  
Author(s):  
Christopher J.L. Wilson ◽  
Mark Peternell

AbstractLayered and polycrystalline ice was experimentally deformed in general shear involving axial compression (strain magnitude 0.5-17%) and simple shear (strain magnitude γ = 0.1-1.4). As the temperature is increased from -20°C to -2°C, there is at least a twofold enhancement in octahedral shear strain rate, which coincides with the onset of extensive dynamic recrystallization and a change in grain-size distribution at -15°C. Between -150C and -10°C the c-axis preferred orientation rapidly evolves with the initiation of two-maxima fabrics in shear zones. From -10°C to -2°C there is progressive evolution of a final c-axis pattern that is asymmetric with respect to the direction of shortening, with a strong maximum at ~5° to the pole of the shear zone, a sense of asymmetry in the direction of the shear, and a secondary maximum inclined at ~45° to the plane of shearing. An initial c-axis preferred orientation plays a critical role in the initial mechanical evolution. In contrast to established ideas, a strong alignment of basal planes parallel to the plane of easy glide inhibited deformation and there was an increased component of strain hardening until recrystallization processes become dominant.


2014 ◽  
Vol 553 ◽  
pp. 28-34 ◽  
Author(s):  
Nathaniel James Burbery ◽  
Raj Das ◽  
Giacomo Po ◽  
Nasr Ghoniem

Plastic deformation in face-centred cubic (or ‘FCC’) metals involves multi-scale phenomena which are initiated at atomic length and time scales (on order of 1.0e-15seconds). Understanding the fundamental thresholds for plasticity at atomic and nano/meso scales requires rigorous testing, which cannot be feasibly achieved with current experimental methods. Hence, computer simulation-based investigations are extremely valuable. However, meso-scale simulations cannot yet accommodate atomically-informed grain boundary (or ‘GB’) effects and dislocation interactions. This study will provide a stress - strain analysis based on molecular dynamics simulations of a series of metastable grain boundaries with identical crystal orientations but unique grain boundary characteristics. Relationships between dislocation slip systems, resolved shear stresses and additional thermo-mechanical conditions of the system will be considered in the analysis of dislocation-grain boundary interactions, including GB penetration. This study will form the basis of new phenomenological relationships in an effort to enable accommodation of grain boundaries into meso scale dislocation dynamic simulations.


1981 ◽  
Vol 5 ◽  
Author(s):  
G. Rajeswaran ◽  
M. Thayer ◽  
V. J. Rao ◽  
W. A. Anderson

ABSTRACTWacker polycrystalline silicon shows enhanced grain boundary activity after a high temperature (950° C) anneal. It is possible to passivate this effect in a hydrogen plasma. The low temperature (600° C) processing of MIS technology does not activate grain boundaries or deteriorate a passivated specimen. Activated grain boundaries with MIS structures can be used to assess the character of recombination currents. It is concluded that MIS processing is advantageous for passivated polycrystalline silicon.


Sign in / Sign up

Export Citation Format

Share Document