scholarly journals RELATIVELY EXCHANGEABLE STRUCTURES

2018 ◽  
Vol 83 (2) ◽  
pp. 416-442 ◽  
Author(s):  
HARRY CRANE ◽  
HENRY TOWSNER

AbstractWe study random relational structures that are relatively exchangeable—that is, whose distributions are invariant under the automorphisms of a reference structure ${M}$. When ${M}$ is ultrahomogeneous and has trivial definable closure, all random structures relatively exchangeable with respect to $m$ satisfy a general Aldous–Hoover-type representation. If ${M}$ also satisfies the n-disjoint amalgamation property (n-DAP) for all $n \ge 1$, then relatively exchangeable structures have a more precise description whereby each component depends locally on ${M}$.

1993 ◽  
Vol 58 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Joel Spencer

One of this author's favorite theorems has long been the Zero-One law discovered independently by Glebskii et al. [12] and Ron Fagin [10]. Let A be any first-order property of graphs and let µn(A) be the proportion of labelled graphs on n vertices for which A holds. ThenThis result has inspired much work by logicians, generally in the direction of showing (1) for some powerful languages. Thus it is known [5] that (1) holds when A is a sentence in fixed point logic and it is known [13] that (1) does not always hold when A is a sentence in second-order monadic logic. Here, however, we explore recent work in a totally different direction. Let G(n, p) denote the random graph on n vertices with edge probability p. (In §2 we define the random structures we will deal with.) A property A is an event in the probability space and Pr[G(n, p) ╞ A] is well defined. When p = 1/2, each labelled graph on n vertices has equal weight so that (1) may be rewrittenFagin's proof actually gives that (2) holds for any constant 0 < p < 1.


2019 ◽  
Vol 84 (1) ◽  
pp. 88-101
Author(s):  
RUIYUAN CHEN

AbstractA category has the amalgamation property (AP) if every pushout diagram has a cocone, and the joint embedding property (JEP) if every finite coproduct diagram has a cocone. We show that for a finitely generated category I, the following are equivalent: (i) every I-shaped diagram in a category with the AP and the JEP has a cocone; (ii) every I-shaped diagram in the category of sets and injections has a cocone; (iii) a certain canonically defined category ${\cal L}\left( {\bf{I}} \right)$ of “paths” in I has only idempotent endomorphisms. When I is a finite poset, these are further equivalent to: (iv) every upward-closed subset of I is simply-connected; (v) I can be built inductively via some simple rules. Our proof also shows that these conditions are decidable for finite I.


2019 ◽  
Vol 84 (3) ◽  
pp. 929-936
Author(s):  
IVAN DI LIBERTI

AbstractWe study the two model-theoretic concepts of weak saturation and weak amalgamation property in the context of accessible categories. We relate these two concepts providing sufficient conditions for existence and uniqueness of weakly saturated objects of an accessible category ${\cal K}$. We discuss the implications of this fact in classical model theory.


2009 ◽  
Vol 74 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Koichiro Ikeda ◽  
Hirotaka Kikyo ◽  
Akito Tsuboi

AbstractLet be a finite relational language and α = (αR: R ∈ ) a tuple with 0 < αR ≤ 1 for each R ∈ . Consider a dimension functionwhere each eR(A) is the number of realizations of R in A. Let Kα be the class of finite structures A such that δα (X) ≥ 0 for any substructure X of A. We show that the theory of the generic model of Kα is AE-axiomatizable for any α.


2014 ◽  
Vol 79 (01) ◽  
pp. 266-278 ◽  
Author(s):  
JOAN BAGARIA ◽  
MENACHEM MAGIDOR

Abstract An uncountable cardinal κ is called ${\omega _1}$ -strongly compact if every κ-complete ultrafilter on any set I can be extended to an ${\omega _1}$ -complete ultrafilter on I. We show that the first ${\omega _1}$ -strongly compact cardinal, ${\kappa _0}$ , cannot be a successor cardinal, and that its cofinality is at least the first measurable cardinal. We prove that the Singular Cardinal Hypothesis holds above ${\kappa _0}$ . We show that the product of Lindelöf spaces is κ-Lindelöf if and only if $\kappa \ge {\kappa _0}$ . Finally, we characterize ${\kappa _0}$ in terms of second order reflection for relational structures and we give some applications. For instance, we show that every first-countable nonmetrizable space has a nonmetrizable subspace of size less than ${\kappa _0}$ .


Author(s):  
Carolyn Nohr ◽  
Ann Ayres

Texts on electron diffraction recommend that the camera constant of the electron microscope be determine d by calibration with a standard crystalline specimen, using the equation


Author(s):  
Kin Lam

The energy of moving ions in solid is dependent on the electronic density as well as the atomic structural properties of the target material. These factors contribute to the observable effects in polycrystalline material using the scanning ion microscope. Here we outline a method to investigate the dependence of low velocity proton stopping on interatomic distances and orientations.The interaction of charged particles with atoms in the frame work of the Fermi gas model was proposed by Lindhard. For a system of atoms, the electronic Lindhard stopping power can be generalized to the formwhere the stopping power function is defined as


Author(s):  
A. Kosiara ◽  
J. W. Wiggins ◽  
M. Beer

A magnetic spectrometer to be attached to the Johns Hopkins S. T. E. M. is under construction. Its main purpose will be to investigate electron interactions with biological molecules in the energy range of 40 KeV to 100 KeV. The spectrometer is of the type described by Kerwin and by Crewe Its magnetic pole boundary is given by the equationwhere R is the electron curvature radius. In our case, R = 15 cm. The electron beam will be deflected by an angle of 90°. The distance between the electron source and the pole boundary will be 30 cm. A linear fringe field will be generated by a quadrupole field arrangement. This is accomplished by a grounded mirror plate and a 45° taper of the magnetic pole.


Author(s):  
N. J. Zaluzec

The ultimate sensitivity of microchemical analysis using x-ray emission rests in selecting those experimental conditions which will maximize the measured peak-to-background (P/B) ratio. This paper presents the results of calculations aimed at determining the influence of incident beam energy, detector/specimen geometry and specimen composition on the P/B ratio for ideally thin samples (i.e., the effects of scattering and absorption are considered negligible). As such it is assumed that the complications resulting from system peaks, bremsstrahlung fluorescence, electron tails and specimen contamination have been eliminated and that one needs only to consider the physics of the generation/emission process.The number of characteristic x-ray photons (Ip) emitted from a thin foil of thickness dt into the solid angle dΩ is given by the well-known equation


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Sign in / Sign up

Export Citation Format

Share Document