Machine Learning in Fine Wine Price Prediction

2015 ◽  
Vol 10 (2) ◽  
pp. 151-172 ◽  
Author(s):  
Michelle Yeo ◽  
Tristan Fletcher ◽  
John Shawe-Taylor

AbstractAdvanced machine learning techniques like Gaussian process regression and multi-task learning are novel in the area of wine price prediction; previous research in this area being restricted to parametric linear regression models when predicting wine prices. Using historical price data of the 100 wines in the Liv-Ex 100 index, the main contributions of this paper to the field are, firstly, a clustering of the wines into two distinct clusters based on autocorrelation. Secondly, an implementation of Gaussian process regression on these wines with predictive accuracy surpassing both the trivial and simple ARMA and GARCH time series prediction benchmarks. Lastly, an implementation of an algorithm which performs multi-task feature learning with kernels on the wine returns as an extension to our optimal Gaussian process regression model. Using the optimal covariance kernel from Gaussian process regression, we achieve predictive results which are comparable to that of Gaussian process regression. Altogether, our research suggests that there is potential in using advanced machine learning techniques in wine price prediction. (JEL Classifications: C6, G12)

Risks ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 50
Author(s):  
Sandrine Gümbel ◽  
Thorsten Schmidt

Calibration is a highly challenging task, in particular in multiple yield curve markets. This paper is a first attempt to study the chances and challenges of the application of machine learning techniques for this. We employ Gaussian process regression, a machine learning methodology having many similarities with extended Kálmán filtering, which has been applied many times to interest rate markets and term structure models. We find very good results for the single-curve markets and many challenges for the multi-curve markets in a Vasiček framework. The Gaussian process regression is implemented with the Adam optimizer and the non-linear conjugate gradient method, where the latter performs best. We also point towards future research.


2020 ◽  
Author(s):  
Akshay Kumar ◽  
Farhan Mohammad Khan ◽  
Rajiv Gupta ◽  
Harish Puppala

AbstractThe outbreak of COVID-19 is first identified in China, which later spread to various parts of the globe and was pronounced pandemic by the World Health Organization (WHO). The disease of transmissible person-to-person pneumonia caused by the extreme acute respiratory coronavirus 2 syndrome (SARS-COV-2, also known as COVID-19), has sparked a global warning. Thermal screening, quarantining, and later lockdown were methods employed by various nations to contain the spread of the virus. Though exercising various possible plans to contain the spread help in mitigating the effect of COVID-19, projecting the rise and preparing to face the crisis would help in minimizing the effect. In the scenario, this study attempts to use Machine Learning tools to forecast the possible rise in the number of cases by considering the data of daily new cases. To capture the uncertainty, three different techniques: (i) Decision Tree algorithm, (ii) Support Vector Machine algorithm, and (iii) Gaussian process regression are used to project the data and capture the possible deviation. Based on the projection of new cases, recovered cases, deceased cases, medical facilities, population density, number of tests conducted, and facilities of services, are considered to define the criticality index (CI). CI is used to classify all the districts of the country in the regions of high risk, low risk, and moderate risk. An online dashpot is created, which updates the data on daily bases for the next four weeks. The prospective suggestions of this study would aid in planning the strategies to apply the lockdown/ any other plan for any country, which can take other parameters to define the CI.


Author(s):  
Sachin Kamley ◽  
Shailesh Jaloree ◽  
R.S. Thakur

<p>Forecasting share performance becomes more challenging issue due to the enormous amount of valuable trading data stored in the stock database. Currently, existing forecasting methods are insufficient to analyze the share performance accurately. There are two main reasons for that: First, the study of existing forecasting methods is still insufficient to identify the most suitable methods for share price prediction. Second, the lack of investigations made on the factors affecting the share performance. In this regard, this study presents a systematic review of the last fifteen years on various machine learning techniques in order to analyze share performance accurately. The only objective of this study is to provide an overview of the machine learning techniques that have been used to forecast share performance. This paper also highlights a how the prediction algorithms can be used to identify the most important variables in a share market dataset. Finally, we could have succeeded to analyze share performance effectively. It could bring benefits and impacts to researchers, society, brokers and financial analysts.</p>


Author(s):  
Subhendu Kumar Pani ◽  
Bikram Kesari Ratha ◽  
Ajay Kumar Mishra

Microarray technology of DNA permits simultaneous monitoring and determining of thousands of gene expression activation levels in a single experiment. Data mining technique such as classification is extensively used on microarray data for medical diagnosis and gene analysis. However, high dimensionality of the data affects the performance of classification and prediction. Consequently, a key issue in microarray data is feature selection and dimensionality reduction in order to achieve better classification and predictive accuracy. There are several machine learning approaches available for feature selection. In this study, the authors use Particle Swarm Organization (PSO) and Genetic Algorithm (GA) to find the performance of several popular classifiers on a set of microarray datasets. Experimental results conclude that feature selection affects the performance.


2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Luca Pipia ◽  
Eatidal Amin ◽  
Santiago Belda ◽  
Matías Salinero-Delgado ◽  
Jochem Verrelst

For the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient time series processor to fill up gaps in optical imagery, typically due to cloud cover. This makes GPR perfectly suited for large-scale spatiotemporal processing of satellite imageries into cloud-free products of biophysical variables. With the advent of the Google Earth Engine (GEE) cloud platform, new opportunities emerged to process local-to-planetary scale satellite data using advanced machine learning techniques and convert them into gap-filled vegetation properties products. However, GPR is not yet part of the GEE ecosystem. To circumvent this limitation, this work proposes a general adaptation of GPR formulation to parallel processing framework and its integration into GEE. To demonstrate the functioning and utility of the developed workflow, a GPR model predicting green leaf area index (LAIG) from Sentinel-2 imagery was imported. Although by running this GPR model into GEE any corner of the world can be mapped into LAIG at a resolution of 20 m, here we show some demonstration cases over western Europe with zoom-ins over Spain. Thanks to the computational power of GEE, the mapping takes place on-the-fly. Additionally, a GPR-based gap filling strategy based on pre-optimized kernel hyperparameters is also put forward for the generation of multi-orbit cloud-free LAIG maps with an unprecedented level of detail, and the extraction of regularly-sampled LAIG time series at a pixel level. The ability to plugin a locally-trained GPR model into the GEE framework and its instant processing opens up a new paradigm of remote sensing image processing.


Sign in / Sign up

Export Citation Format

Share Document