scholarly journals Developing a model for the prediction of ground motions due to earthquakes in the Groningen gas field

2017 ◽  
Vol 96 (5) ◽  
pp. s203-s213 ◽  
Author(s):  
Julian J. Bommer ◽  
Bernard Dost ◽  
Benjamin Edwards ◽  
Pauline P. Kruiver ◽  
Michail Ntinalexis ◽  
...  

AbstractMajor efforts are being undertaken to quantify seismic hazard and risk due to production-induced earthquakes in the Groningen gas field as the basis for rational decision-making about mitigation measures. An essential element is a model to estimate surface ground motions expected at any location for each earthquake originating within the gas reservoir. Taking advantage of the excellent geological and geophysical characterisation of the field and a growing database of ground-motion recordings, models have been developed for predicting response spectral accelerations, peak ground velocity and ground-motion durations for a wide range of magnitudes. The models reflect the unique source and travel path characteristics of the Groningen earthquakes, and account for the inevitable uncertainty in extrapolating from the small observed magnitudes to potential larger events. The predictions of ground-motion amplitudes include the effects of nonlinear site response of the relatively soft near-surface deposits throughout the field.

Author(s):  
Brendon A. Bradley ◽  
Liam M. Wotherspoon ◽  
Anna E. Kaiser

This paper presents ground motion and site effect observations in the greater Wellington region from the 14 November 2016 Mw7.8 Kaikōura earthquake. The region was the principal urban area to be affected by the earthquake-induced ground motions from this event. Despite being approximately 60km from the northern extent of the causative earthquake rupture, the ground motions in Wellington exhibited long period (specifically T = 1 - 3s) ground motion amplitudes that were similar to, and in some locations exceeded, the current 500 year return period design ground motion levels. Several ground motion observations on rock provide significant constraint to understand the role of surficial site effects in the recorded ground motions. The largest long period ground motions were observed in the Thorndon and Te Aro basins in Wellington City, inferred as a result of 1D impedance contrasts and also basin-edge-generated waves. Observed site amplifications, based on response spectral ratios with reference rock sites, are seen to significantly exceed the site class factors in NZS1170.5:2004 for site class C, D, and E sites at approximately T=0.3-3.0s. The 5-95% Significant Duration, Ds595, of ground motions was on the order of 30 seconds, consistent with empirical models for this earthquake magnitude and source-to-site distance. Such durations are slightly longer than the corresponding Ds595 = 10s and 25s in central Christchurch during the 22 February 2011 Mw6.2 and 4 September 2010 Mw7.1 earthquakes, but significantly shorter than what might be expected for large subduction zone earthquakes that pose a hazard to the region. In summary, the observations highlight the need to better understand and quantify basin and near-surface site response effects through more comprehensive models, and better account for such effects through site amplification factors in design standards.


2017 ◽  
Vol 33 (2) ◽  
pp. 481-498 ◽  
Author(s):  
Julian J. Bommer ◽  
Peter J. Stafford ◽  
Benjamin Edwards ◽  
Bernard Dost ◽  
Ewoud van Dedem ◽  
...  

The potential for building damage and personal injury due to induced earthquakes in the Groningen gas field is being modeled in order to inform risk management decisions. To facilitate the quantitative estimation of the induced seismic hazard and risk, a ground motion prediction model has been developed for response spectral accelerations and duration due to these earthquakes that originate within the reservoir at 3 km depth. The model is consistent with the motions recorded from small-magnitude events and captures the epistemic uncertainty associated with extrapolation to larger magnitudes. In order to reflect the conditions in the field, the model first predicts accelerations at a rock horizon some 800 m below the surface and then convolves these motions with frequency-dependent nonlinear amplification factors assigned to zones across the study area. The variability of the ground motions is modeled in all of its constituent parts at the rock and surface levels.


2020 ◽  
Vol 110 (4) ◽  
pp. 1530-1548 ◽  
Author(s):  
Grace A. Parker ◽  
Annemarie S. Baltay ◽  
John Rekoske ◽  
Eric M. Thompson

ABSTRACT We use a large instrumental dataset from the 2019 Ridgecrest earthquake sequence (Rekoske et al., 2019, 2020) to examine repeatable source-, path-, and site-specific ground motions. A mixed-effects analysis is used to partition total residuals relative to the Boore et al. (2014; hereafter, BSSA14) ground-motion model. We calculate the Arias intensity stress drop for the earthquakes and find strong correlation with our event terms, indicating that they are consistent with source processes. We look for physically meaningful trends in the partitioned residuals and test the ability of BSSA14 to capture the behavior we observe in the data. We find that BSSA14 is a good match to the median observations for M>4. However, we find bias for individual events, especially those with small magnitude and hypocentral depth≥7  km, for which peak ground acceleration is underpredicted by a factor of 2.5. Although the site amplification term captures the median site response when all sites are considered together, it does not capture variations at individual stations across a range of site conditions. We find strong basin amplification in the Los Angeles, Ventura, and San Gabriel basins. We find weak amplification in the San Bernardino basin, which is contrary to simulation-based findings showing a channeling effect from an event with a north–south azimuth. This and an additional set of ground motions from earthquakes southwest of Los Angeles suggest that there is an azimuth-dependent southern California basin response related to the orientation of regional structures when ground motion from waves traveling south–north are compared with those in the east–west direction. These findings exhibit the power of large, spatially dense ground-motion datasets and make clear that nonergodic models are a way to reduce bias and uncertainty in ground-motion estimation for applications like the U.S. Geological Survey National Seismic Hazard Model and the ShakeAlert earthquake early warning System.


2020 ◽  
Vol 110 (6) ◽  
pp. 2862-2881
Author(s):  
Arthur J. Rodgers ◽  
Arben Pitarka ◽  
Ramesh Pankajakshan ◽  
Bjorn Sjögreen ◽  
N. Anders Petersson

ABSTRACT Large earthquake ground-motion simulations in 3D Earth models provide constraints on site-specific shaking intensities but have suffered from limited frequency resolution and ignored site response in soft soils. We report new regional-scale 3D simulations for moment magnitude 7.0 scenario earthquakes on the Hayward Fault, northern California with SW4. Simulations resolved significantly broader band frequencies (0–10 Hz) than previous studies and represent the highest resolution simulations for any such earthquake to date. Seismic waves were excited by a kinematic rupture following Graves and Pitarka (2016) and obeyed wave propagation in a 3D Earth model with topography from the U.S. Geological Survey (USGS) assuming a minimum shear wavespeed, VSmin, of 500  m/s. We corrected motions for linear and nonlinear site response for the shear wavespeed, VS, from the USGS 3D model, using a recently developed ground-motion model (GMM) for Fourier amplitude spectra (Bayless and Abrahamson, 2018, 2019a). At soft soil locations subjected to strong shaking, the site-corrected intensities reflect the competing effects of linear amplification by low VS material, reduction of stiffness during nonlinear deformation, and damping of high frequencies. Sites with near-surface VS of 500  m/s or greater require no linear site correction but can experience amplitude reduction due to nonlinear response. Averaged over all sites, we obtained reasonable agreement with empirical ergodic median GMMs currently used for seismic hazard and design ground motions (epsilon less than 1), with marked improvement at soft sedimentary sites. At specific locations, the simulated shaking intensities show systematic differences from the GMMs that reveal path and site effects not captured in these ergodic models. Results suggest how next generation regional-scale earthquake simulations can provide higher spatial and frequency resolution while including effects of soft soils that are commonly ignored in scenario earthquake ground-motion simulations.


2000 ◽  
Vol 37 (1) ◽  
pp. 26-39 ◽  
Author(s):  
Jun Yang ◽  
Tadanobu Sato ◽  
Xiang-Song Li

Recently there has been an increased interest in the study of the nonlinearity in soil response for large strains through in situ earthquake observations. In this paper, the downhole array acceleration data recorded at a reclaimed island, Kobe, during the 1995 Kobe earthquake are used to study nonlinear site effects. Particular attention is given to the liquefaction-induced nonlinear effects on the recorded ground motions. By using the spectral ratio and the spectral-smoothing technique, the characteristics of the ground motions are analyzed. It is shown that the peak frequencies in spectral ratios were shifted to lower frequencies when the strongest motions occurred. The increase in the predominant period was caused primarily by a strong attenuation of low-period waves, rather than by amplification of long-period motions. Based on the spectral analyses, the nonlinearity occurring in the shallow liquefied layer during the shaking event is identified, manifested by a significant reduction of the shear modulus. A fully coupled, inelastic, finite element analysis of the response of the array site is carried out. The stress-strain histories of soils and excess pore-water pressures at different depths are calculated. It is suggested that the stress-strain response and the build up of pore pressure are well correlated to the variation of the characteristics of ground motions during the shaking history.Key words: site response, ground motion, nonlinearity, soil liquefaction, array records, Kobe earthquake.


2009 ◽  
Vol 25 (3) ◽  
pp. 541-555 ◽  
Author(s):  
Christine A. Goulet ◽  
Jonathan P. Stewart

It is common for ground motions to be estimated using a combination of probabilistic and deterministic procedures. Probabilistic seismic hazard analyses (PSHA) are performed to estimate intensity measures ( IMs) for reference site conditions (usually rock). This is followed by a deterministic modification of the rock IMs to account for site effects, typically using site factors from the literature or seismic codes. We demonstrate for two California sites and three site conditions that the deterministic application of nonlinear site factors underestimates ground motions evaluated probabilistically for return periods of engineering interest. Reasons for this misfit include different standard deviation terms for rock and soil sites, different controlling earthquakes, and overestimation of the nonlinear component of the site response in the deterministic procedure. This problem is solved using site-specific PSHA with appropriate consideration of nonlinear site response, within the hazard integral.


Author(s):  
Pauline P. Kruiver ◽  
Manos Pefkos ◽  
Erik Meijles ◽  
Gerard Aalbersberg ◽  
Xander Campman ◽  
...  

AbstractIn order to inform decision-making regarding measures to mitigate the impact of induced seismicity in the Groningen gas field in the Netherlands, a comprehensive seismic risk model has been developed. Starting with gas production scenarios and the consequent reservoir compaction, the model generates synthetic earthquake catalogues which are deployed in Monte Carlo analyses, predicting ground motions at a buried reference rock horizon that are combined with nonlinear amplification factors to estimate response spectral accelerations at the surface. These motions are combined with fragility functions defined for the exposed buildings throughout the region to estimate damage levels, which in turn are transformed to risk in terms of injury through consequence functions. Several older and potentially vulnerable buildings are located on dwelling mounds that were constructed from soils and organic material as a flood defence. These anthropogenic structures are not included in the soil profile models used to develop the amplification factors and hence their influence has not been included in the risk analyses to date. To address this gap in the model, concerted studies have been identified to characterize the dwelling mounds. These include new shear-wave velocity measurements that have enabled dynamic site response analyses to determine the modification of ground shaking due to the presence of the mound. A scheme has then been developed to incorporate the dwelling mounds into the risk calculations, which included an assessment of whether the soil-structure interaction effects for buildings founded on the mounds required modification of the seismic fragility functions.


2021 ◽  
Author(s):  
Janneke van Ginkel ◽  
Elmer Ruigrok ◽  
Rien Herber

<p>Local site conditions can strongly influence the level of amplification of ground-motion at the surface during an earthquake. Especially near-surface low velocity sediments overlying stiffer seismic bedrock modify earthquake ground motions in terms of amplitudes and frequency content, the so-called site response. Earthquake ground-motion site response is of great concern because it can lead to amplified surface shaking resulting in significant damage on structures despite small magnitude events. The Netherlands has tectonically related seismic activity in the southern region with magnitudes up to 5.8 measured so far. In addition, gas extraction in the Groningen field in the northern part of the Netherlands, is regularly causing shallow (3 km), low magnitude (Mw max= 3.6), induced earthquakes. The shallow geology of the Netherlands consists of a very heterogeneous soft sediment cover, which has a strong effect on seismic wave propagation and in particular on the amplitude of ground shaking.</p><p> </p><p>The ambient seismic field and local earthquakes recorded over 69 borehole stations in Groningen are used to define relationships between the subsurface lithological composition, measured shear-wave velocity profiles, horizontal-to-vertical spectral ratios (HVSR) and empirical transfer functions (ETF). For the Groningen region we show that the HVSR matches the ETF well and conclude that the HVSR can be used as a first proxy for earthquake site-response. In addition, based on the ETFs we observe that most of the seismic wave amplification occurs in the top 50 m of the much thicker sediment layer. Here, a velocity contrast is present between the very soft Holocene clays and peat on top of the stiffer Pleistocene sands.</p><p> </p><p>Based on the learnings from Groningen we first constructed sediment type classes for the Dutch subsurface, each class representing a level of expected amplification. Secondly, the HVSR curves are estimated for all surface seismometers in the Netherlands seismic network and a sediment class is assigned to each location. Highest HVSR peak amplitudes are measured at sites with the highest level of amplification of the sediment classification. Based on this correlation and the presence of a detailed shallow geological model at most sites in the Netherlands, a simplistic approach is presented to predict amplification at any location with sufficient lithologic information. With this approach based on the shallow sediment composition, we can obtain constraints on the seismic hazard in areas that have limited data availability but have potential risk of seismicity, for example due to geothermal energy extraction.</p>


Sign in / Sign up

Export Citation Format

Share Document