scholarly journals The MWA long baseline Epoch of reionisation survey—I. Improved source catalogue for the EoR 0 field

Author(s):  
C. R. Lynch ◽  
T. J. Galvin ◽  
J. L. B. Line ◽  
C. H. Jordan ◽  
C. M. Trott ◽  
...  

Abstract One of the principal systematic constraints on the Epoch of Reionisation (EoR) experiment is the accuracy of the foreground calibration model. Recent results have shown that highly accurate models of extended foreground sources, and including models for sources in both the primary beam and its sidelobes, are necessary for reducing foreground power. To improve the accuracy of the source models for the EoR fields observed by the Murchison Widefield Array (MWA), we conducted the MWA Long Baseline Epoch of Reionisation Survey (LoBES). This survey consists of multi-frequency observations of the main MWA EoR fields and their eight neighbouring fields using the MWA Phase II extended array. We present the results of the first half of this survey centred on the MWA EoR0 observing field (centred at RA (J2000) $0^\mathrm{h}$ , Dec (J2000) $-27^{\circ}$ ). This half of the survey covers an area of 3 069 degrees $^2$ , with an average rms of 2.1 mJy beam–1. The resulting catalogue contains a total of 80 824 sources, with 16 separate spectral measurements between 100 and 230 MHz, and spectral modelling for 78 $\%$ of these sources. Over this region we estimate that the catalogue is 90 $\%$ complete at 32 mJy, and 70 $\%$ complete at 10.5 mJy. The overall normalised source counts are found to be in good agreement with previous low-frequency surveys at similar sensitivities. Testing the performance of the new source models we measure lower residual rms values for peeled sources, particularly for extended sources, in a set of MWA Phase I data. The 2-dimensional power spectrum of these data residuals also show improvement on small angular scales—consistent with the better angular resolution of the LoBES catalogue. It is clear that the LoBES sky models improve upon the current sky model used by the Australian MWA EoR group for the EoR0 field.

Author(s):  
Judd D. Bowman ◽  
Iver Cairns ◽  
David L. Kaplan ◽  
Tara Murphy ◽  
Divya Oberoi ◽  
...  

AbstractSignificant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.


Author(s):  
Natasha Hurley-Walker ◽  
John Morgan ◽  
Randall B. Wayth ◽  
Paul J. Hancock ◽  
Martin E. Bell ◽  
...  

AbstractWe present the results of an approximately 6 100 deg2 104–196 MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December: the MWACS. The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The survey covers approximately 20.5 h < RA < 8.5 h, − 58° < Dec < −14°over three frequency bands centred on 119, 150 and 180 MHz, with image resolutions of 6–3 arcmin. The catalogue has 3 arcmin angular resolution and a typical noise level of 40 mJy beam− 1, with reduced sensitivity near the field boundaries and bright sources. We describe the data reduction strategy, based upon mosaicked snapshots, flux density calibration, and source-finding method. We present a catalogue of flux density and spectral index measurements for 14 110 sources, extracted from the mosaic, 1 247 of which are sub-components of complexes of sources.


1995 ◽  
Vol 149 ◽  
pp. 365-368
Author(s):  
Ph. Stee ◽  
D. Bonneau ◽  
P. Lawson ◽  
F. Morand ◽  
D. Mourard ◽  
...  

AbstractThe GI2T is an optical long-baseline Michelson interferometer which analyses dispersed stellar fringes in the multi-speckle mode with a spectral resolution of one Angstrom while the spatial resolution is about one milliarcsecond. This makes the GI2T a powerful instrument able to perform MSI of extended sources like Be stars or shell stars. In order to interpret these data we have developed a latitude dependent radiative wind model for Be stars. This numerical code enables us to compare directly computed 2D maps in some Balmer lines (Hα and Hβ) with high angular resolution data of some Be stars.


Author(s):  
J. L. B. Line ◽  
D. A. Mitchell ◽  
B. Pindor ◽  
J. L. Riding ◽  
B. McKinley ◽  
...  

Abstract To make a power spectrum (PS) detection of the 21-cm signal from the Epoch of Reionisation (EoR), one must avoid/subtract bright foreground sources. Sources such as Fornax A present a modelling challenge due to spatial structures spanning from arc seconds up to a degree. We compare modelling with multi-scale (MS) CLEAN components to ‘shapelets’, an alternative set of basis functions. We introduce a new image-based shapelet modelling package, SHAMFI. We also introduce a new CUDA simulation code (WODEN) to generate point source, Gaussian, and shapelet components into visibilities. We test performance by modelling a simulation of Fornax A, peeling the model from simulated visibilities, and producing a residual PS. We find the shapelet method consistently subtracts large-angular-scale emission well, even when the angular resolution of the data is changed. We find that when increasing the angular resolution of the data, the MS CLEAN model worsens at large angular scales. When testing on real Murchison Widefield Array data, the expected improvement is not seen in real data because of the other dominating systematics still present. Through further simulation, we find the expected differences to be lower than obtainable through current processing pipelines. We conclude shapelets are worthwhile for subtracting extended galaxies, and may prove essential for an EoR detection in the future, once other systematics have been addressed.


2019 ◽  
Vol 490 (4) ◽  
pp. 5798-5806 ◽  
Author(s):  
D d’Antonio ◽  
M Giroletti ◽  
G Giovannini ◽  
A Maini

ABSTRACT Low-frequency radio surveys allow in-depth studies and new analyses of classes of sources that were previously known and characterized only in other bands. In recent years, low radio frequency observations of blazars have become available as a result of new surveys, such as the GaLactic and Extragalactic All-sky Murchison Widefield Array (MWA) survey (GLEAM). We search for gamma-ray blazars in a low-frequency (ν &lt; 240 MHz) survey, to characterize the spectral properties of the spatial components. We cross-correlate GLEAM with the fourth catalogue of active galactic nuclei (4LAC) detected by the Fermi satellite. This improves on previous works by using a low-frequency catalogue that is wider and deeper, with a better spectral coverage and the latest and most sensitive gamma-ray source list. Compared with a previous study based on the commissioning survey, the detection rate increased from 35 to 70 per cent. We include data from the Australia Telescope 20-GHz (AT20G) survey in order to extract high-frequency high-angular resolution information about the radio cores of blazars. We find low radio frequency counterparts for 1274 out of 1827 blazars in the range of 72–231 MHz. Blazars have flat spectra at the ∼100-MHz regime, with a mean spectral index α = −0.44 ± 0.01 (assuming Sν ∝ να). Low synchrotron peaked objects have a flatter spectrum than high synchrotron peaked objects. Low frequency radio and gamma-ray emissions show a significant but scattered correlation. The ratio between lobe and core radio emission in gamma-ray blazars is smaller than previously estimated.


Author(s):  
Tara Murphy ◽  
David L. Kaplan ◽  
Martin E. Bell ◽  
J. R. Callingham ◽  
Steve Croft ◽  
...  

AbstractWe present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array telescope. We searched the GaLactic and Extragalactic All-sky Murchison Widefield Array survey images for 200-MHz continuum radio emission at the position of all pulsars in the Australia Telescope National Facility (ATNF) pulsar catalogue. For the 60 confirmed detections, we have measured flux densities in 20 × 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the Murchison Widefield Array flux densities are in good agreement.


Author(s):  
J. S. Morgan ◽  
J.-P. Macquart ◽  
R. Chhetri ◽  
R. D. Ekers ◽  
S. J. Tingay ◽  
...  

AbstractWe describe the parameters of a low-frequency all-sky survey of compact radio sources using Interplanetary Scintillation, undertaken with the Murchison Widefield Array. While this survey gives important complementary information to low-resolution survey, providing information on the sub-arsecond structure of every source, a survey of this kind has not been attempted in the era of low-frequency imaging arrays such as the Murchison Widefield Array and LOw Frequency Array. Here we set out the capabilities of such a survey, describing the limitations imposed by the heliocentric observing geometry and by the instrument itself. We demonstrate the potential for Interplanetary Scintillation measurements at any point on the celestial sphere and we show that at 160 MHz, reasonable results can be obtained within 30° of the ecliptic (2π str: half the sky). We also suggest some observational strategies and describe the first such survey, the Murchison Widefield Array Phase I Interplanetary Scintillation survey. Finally we analyse the potential of the recently upgraded Murchison Widefield Array and discuss the potential of the Square Kilometre Array-low to use Interplanetary Scintillation to probe sub-mJy flux density levels at sub-arcsecond angular resolution.


2019 ◽  
Vol 15 (S356) ◽  
pp. 375-375
Author(s):  
Sarah White

AbstractLow-frequency radio emission allows powerful active galactic nuclei (AGN) to be selected in a way that is unaffected by dust obscuration and orientation of the jet axis. It also reveals past activity (e.g. radio lobes) that may not be evident at higher frequencies. Currently, there are too few “radio-loud” galaxies for robust studies in terms of redshift-evolution and/or environment. Hence our use of new observations from the Murchison Widefield Array (the SKA-Low precursor), over the southern sky, to construct the GLEAM 4-Jy Sample (1,860 sources at S151MHz > 4 Jy). This sample is dominated by AGN and is 10 times larger than the heavily relied-upon 3CRR sample (173 sources at S178MHz > 10 Jy) of the northern hemisphere. In order to understand how AGN influence their surroundings and the way galaxies evolve, we first need to correctly identify the galaxy hosting the radio emission. This has now been completed for the GLEAM 4-Jy Sample – through repeated visual inspection and extensive checks against the literature – forming a valuable, legacy dataset for investigating relativistic jets and their interplay with the environment.


2021 ◽  
Vol 11 (3) ◽  
pp. 1243
Author(s):  
Hongseok Jeong ◽  
Jeung-Hoon Lee ◽  
Yong-Hyun Kim ◽  
Hanshin Seol

The dominant underwater noise source of a ship is known to be propeller cavitation. Recently, attempts have been made to quantify the source strength using on-board pressure sensors near the propeller, as this has advantages over conventional noise measurement. In this study, a beamforming method was used to estimate the source strength of a cavitating propeller. The method was validated against a model-scale measurement in a cavitation tunnel, which showed good agreement between the measured and estimated source levels. The method was also applied to a full-scale measurement, in which the source level was measured using an external hydrophone array. The estimated source level using the hull pressure sensors showed good agreement with the measured one above 400 Hz, which shows potential for noise monitoring using on-board sensors. A parametric study was carried out to check the practicality of the method. From the results, it was shown that a sufficient recording time is required to obtain a consistent level at high frequencies. Changing the frequency resolution had little effect on the result, as long as enough data were provided for the one-third octave band conversion. The number of sensors affected the mid- to low-frequency data.


2002 ◽  
Vol 199 ◽  
pp. 474-483
Author(s):  
Namir E. Kassim ◽  
T. Joseph W. Lazio ◽  
William C. Erickson ◽  
Patrick C. Crane ◽  
R. A. Perley ◽  
...  

Decametric wavelength imaging has been largely neglected in the quest for higher angular resolution because ionospheric structure limited interferometric imaging to short (< 5 km) baselines. The long wavelength (LW, 2—20 m or 15—150 MHz) portion of the electromagnetic spectrum thus remains poorly explored. The NRL-NRAO 74 MHz Very Large Array has demonstrated that self-calibration techniques can remove ionospheric distortions over arbitrarily long baselines. This has inspired the Low Frequency Array (LOFAR)—-a fully electronic, broad-band (15—150 MHz)antenna array which will provide an improvement of 2—3 orders of magnitude in resolution and sensitivity over the state of the art.


Sign in / Sign up

Export Citation Format

Share Document