continuum radio
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 2)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 26 (4) ◽  
pp. 287-313
Author(s):  
M. A. Sidorchuk ◽  
◽  
N. M. Vasilenko ◽  
O. M. Ulyanov ◽  
O. O. Konovalenko ◽  
...  

Purpose: The results of research in continuum decameter-wave radio emission of the Galaxy background, ionized hydrogen regions, supernova remnants, extragalactic discrete sources, extended galaxies, galactic clusters, extragalactic background are given. The aim of this work is reviewing the results achieved for over 50-years of the UTR-2 radiotelescope research of our Galaxy and its population, as well as extragalactic radio sources in the continuum radio emission spectrum at extremely low frequencies for the ground based observations. Design/methodology/approach: The review, analysis, collection of archival data in various publications related to the subjectof this work. Findings: The basic results of studying the ionized hydrogen regions, supernova remnants, Galaxy background emission and its large-scale structure are given, and the maps of these sources are obtained. The catalog of extragalactic discrete radio sources of the most Northern sky part and the cosmological conclusions based on its analysis are described; the estimate of the isotropic extragalactic background brightness temperature is obtained; for the first time, the observational results for the Andromeda galaxy and two galactic clusters Coma and A2255 are given briefly. Conclusions: All the results presented here emphasize the uniqueness and importance of research in the decameter wavelength range, and the large area, flexibility of structure, continuous improvement make the UTR-2 radio telescope an indispensable tool for solving the most important tasks of modern radio astronomy, despite its respectable age. For example, only in the range of 10 to 30 MHz the ionized part of the most common element in the universe, the hydrogen, becomes optically thick and begins to absorb the synchrotron emission on the line of sight, which allows rather easy separation of thermal and non-thermal components of radioemission. This property allows to determine the ionized hydrogen regions’ electron temperature and the electron concentration on the line of sight independently in studying the hydrogen emission regions. When studying the supernova remnants, we can determine the ionized matter location by their spectrum drops ‒ before, inside or behind the remnant. Based on the HB3 supernova remnant radio imagies, an assumption was made on the existence of an ionized hydrogen relic shell aroundit, being caused by the initial ultraviolet flash of a supernova. For the first time, the maps of the Northern sky large-scale structure in the declination range from ‒15° to +85° at extremely low frequencies 10, 12.6, 14.7, 16.7, 20 and 25 MHz for the ground-based observations are published, which, besides their own scientific value, may allow to correct the UTR-2 radio telescope imaging results. Using the full-resolution UTR-2 maps and the developed method of multifrequency T‒T diagrams, it was possible to separate the background radiation into galactic and extragalactic components and construct the spectrum of the latter. From the analysis of the most complete decameter wavelength range catalog of discrete sources, it follows that there is a gap in the redshift spatial distribution for all classes of extragalactic sources. The existence of an ionized hydrogen ring in the Andromeda Nebula disk has been suggested. It is shown that the main partof the galaxy clusters decameter-wave emission comes from haloes and relics. Key words: decameter range; discrete sources; supernovaremnants; catalog; continuum radio emission; HII regions; UTR-2; background emission


2020 ◽  
Vol 493 (1) ◽  
pp. L70-L75
Author(s):  
S J Curran

ABSTRACT Machine learning techniques, specifically the k-nearest neighbour algorithm applied to optical band colours, have had some success in predicting photometric redshifts of quasi-stellar objects (QSOs): Although the mean of differences between the spectroscopic and photometric redshifts, Δ$z$, is close to zero, the distribution of these differences remains wide and distinctly non-Gaussian. As per our previous empirical estimate of photometric redshifts, we find that the predictions can be significantly improved by adding colours from other wavebands, namely the near-infrared and ultraviolet. Self-testing this, by using half of the 33 643 strong QSO sample to train the algorithm, results in a significantly narrower spread in Δ$z$ for the remaining half of the sample. Using the whole QSO sample to train the algorithm, the same set of magnitudes return a similar spread in Δ$z$ for a sample of radio sources (quasars). Although the matching coincidence is relatively low (739 of the 3663 sources having photometry in the relevant bands), this is still significantly larger than from the empirical method (2 per cent) and thus may provide a method with which to obtain redshifts for the vast number of continuum radio sources expected to be detected with the next generation of large radio telescopes.


Author(s):  
Tara Murphy ◽  
David L. Kaplan ◽  
Martin E. Bell ◽  
J. R. Callingham ◽  
Steve Croft ◽  
...  

AbstractWe present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array telescope. We searched the GaLactic and Extragalactic All-sky Murchison Widefield Array survey images for 200-MHz continuum radio emission at the position of all pulsars in the Australia Telescope National Facility (ATNF) pulsar catalogue. For the 60 confirmed detections, we have measured flux densities in 20 × 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the Murchison Widefield Array flux densities are in good agreement.


2016 ◽  
Vol 12 (S323) ◽  
pp. 376-377
Author(s):  
Lang Cui ◽  
Jun Yang ◽  
Hongli Ma ◽  
Jun Liu ◽  
Wen Chen

AbstractWe proposed to carry out high precision very long baseline interferometry (VLBI) observations of AR Sco, a pulsing white dwarf (WD) - M dwarf (MD) binary, to provide a direct distance measurement with the e-EVN (European VLBI Network) at 5 GHz. By the proposed parallax measurement on AR Sco, not only the precise distance will be determined, but also some physical parameters, such as the luminosity, the mass and the magnetic field will be significantly tightened accordingly, even the gravitational wave amplitude from this unique binary system can be tightly constrained. In addition, the EVN observations will allow us to answer that whether there is an extended emission structure associated with AR Sco, which will help us to explain the stable continuum radio emission observed during the pulse-off state.


2015 ◽  
Vol 12 (S316) ◽  
pp. 157-158
Author(s):  
V. A. Montes ◽  
Peter Hofner ◽  
C. Anderson ◽  
V. Rosero

AbstractA Chandra X-ray Observatory ACIS-I observation and a 6 cm continuum radio observation with the Karl G. Jansky Very Large Array (VLA) together with a multiwavelength study in infrared (2MASS and Spitzer) and optical (USNO-B1.0) shows an increasing surface density of X-ray sources toward the massive protostar. There are at least 43 YSOs within 1.2 pc distance from the massive protostar. This number is consistent with typical B-type stars clusters (Lada & Lada 2003).


2015 ◽  
pp. 29-37 ◽  
Author(s):  
D. Onic

In this paper, the integrated continuum radio spectrum of supernova remnant (SNR) W44 was analyzed up to 70 GHz, testing the different emission models that can be responsible for its particular shape. The observations by the Planck space telescope made it possible to analyze the high frequency part of radio emission from SNRs. Although the quality of radio continuum spectrum (a high scatter of data points at same frequencies) prevents us to make definite conclusions, the possibility of spinning dust emission detection towards this remnant is emphasized. In addition, a concave-down feature, due to synchrotron losses, can not be definitely dismissed by the present knowledge of the integrated radio continuum spectrum of this SNR.


2014 ◽  
Vol 10 (S309) ◽  
pp. 352-352
Author(s):  
Marsha Wolf ◽  
Eric Hooper ◽  
Ryan Sanders ◽  
Charles Liu

AbstractIntegral field spectroscopy and radio interferometry are very powerful tools for studying the interplay between AGN and star formation (SF) in galaxies. We introduce a sample of SDSS galaxies with selection criteria designed to maximize our chances of catching both processes in action. The galaxies are post-starburst, potentially contain radio AGN, and are allowed, but not required, to have ongoing star formation. The resulting sample includes objects classified as traditional post-starbursts and ones that would have been classified as Seyferts based on their emission line properties alone. The systems span a range of merger phases from initial interaction to fully merged, providing snapshots throughout the entire sequence. We are compiling a multi-wavelength data set, including spatially resolved optical spectra from IFUs on WIYN and continuum radio maps from the VLA and GMRT. Here we present initial results on J0754+1648, an interacting system with a post-starburst region near a radio AGN surrounded by highly ionized gas. This object may be an example of SF truncated by AGN feedback.


2013 ◽  
Vol 778 (1) ◽  
pp. 30 ◽  
Author(s):  
R. Ramesh ◽  
P. Kishore ◽  
Sargam M. Mulay ◽  
Indrajit V. Barve ◽  
C. Kathiravan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document