scholarly journals Massive deposition of Sahelian dust on the Canary Island Lanzarote during North Atlantic Heinrich Events

2021 ◽  
pp. 1-16
Author(s):  
Hartmut Heinrich ◽  
Christoph Schmidt ◽  
Florian Ziemen ◽  
Uwe Mikolajewicz ◽  
Christopher-Bastian Roettig

Abstract New IRSL ages of eolianites close to Muñique (Lanzarote) demonstrate the influence of millennial scale climatic variability on the sedimentary dynamics on the Canary Islands during the last glacial cycle. The repetitive succession of interstadial and stadial climatic conditions formed multiple sequences of eolian deposits, each in general comprising three depositional types. DepoType 1 and DepoType 2 consist mainly of marine biogenic carbonate detritus with small amounts of dust from the Sahara representing interstadial conditions. DepoType 2 compared to DepoType 1 is characterized by larger amounts of land snails and calcified brood cells. A DepoType 3 rich in dust from African subtropical/tropical Latisols terminates a sequence. IRSL dating on DepoType 3 type deposits clearly shows that these were deposited during Heinrich Events under stadial conditions. The stadial cooling of the North Atlantic Ocean caused a southern shift of climate zones that culminated during Heinrich Events when the arctic climate reaches its most southerly extent. As a consequence, atmospheric changes led to massive dust supply from the then-dry Sahel. The increase in dust and precipitation from the dry DepoTypes 1 to the more humid DepoTypes 3 originates from a modified atmospheric dynamic during a millennial cycle.

2014 ◽  
Vol 18 (3) ◽  
pp. 40-46 ◽  
Author(s):  
Khamis D. Muslih

Abstract North Atlantic Oscillation (NAO), monthly averages of precipitation in the Baghdad station, and petrologic tracer proxy data for ocean properties in the North Atlantic (NA) have been used in an attempt to identify climatic conditions in Iraq during the study period. The study showed that contemporary changes in precipitation in Iraq are associated with NAO, as a negative relationship is found between them. Moreover, the study found that there is a strong negative correlation between NAOI and SST in NA, where drift ice indices explain between 33–36% of the NAOI variability. The prolonged of cold Holocene periods led to a radical oceanography and atmospheric changes in the NA and the Mediterranean Sea, effectively contributing to the prevalence of cold and drought in the EM, including Iraq. The analysis revealed as many as four intervals of significant cool drought phases prevailing over Iraq during the periods 2650–2500, 2200– 1900,1300–1200 and 1000–850 BC.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Julian David Hunt ◽  
Andreas Nascimento ◽  
Fabio A. Diuana ◽  
Natália de Assis Brasil Weber ◽  
Gabriel Malta Castro ◽  
...  

AbstractThe world is going through intensive changes due to global warming. It is well known that the reduction in ice cover in the Arctic Ocean further contributes to increasing the atmospheric Arctic temperature due to the reduction of the albedo effect and increase in heat absorbed by the ocean’s surface. The Arctic ice cover also works like an insulation sheet, keeping the heat in the ocean from dissipating into the cold Arctic atmosphere. Increasing the salinity of the Arctic Ocean surface would allow the warmer and less salty North Atlantic Ocean current to flow on the surface of the Arctic Ocean considerably increasing the temperature of the Arctic atmosphere and release the ocean heat trapped under the ice. This paper argues that if the North Atlantic Ocean current could maintain the Arctic Ocean ice-free during the winter, the longwave radiation heat loss into space would be larger than the increase in heat absorption due to the albedo effect. This paper presents details of the fundamentals of the Arctic Ocean circulation and presents three possible approaches for increasing the salinity of the surface water of the Arctic Ocean. It then discusses that increasing the salinity of the Arctic Ocean would warm the atmosphere of the Arctic region, but cool down the oceans and possibly the Earth. However, it might take thousands of years for the effects of cooling the oceans to cool the global average atmospheric temperature.


2000 ◽  
Vol 19 (1-5) ◽  
pp. 227-241 ◽  
Author(s):  
Elsa Cortijo ◽  
Laurent Labeyrie ◽  
Mary Elliot ◽  
Estelle Balbon ◽  
Nadine Tisnerat

Author(s):  
Julia Nikolaevna Chizhova

The subject of this article is exmination of the influence of the Arctic air flow on the climatic conditions of the winter period in the center of the European territory of Russia (Moscow). In recent years, the question of the relationship between regional climatic conditions and such global circulation patterns as the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AK) has become increasingly important. Based on the data of long-term observations of temperature and precipitation, the relationship with the AK and NAO was considered. For the winter months of the period 2014-2018, the back trajectories of the movement of air masses were computed for each date of precipitation to identify the sources of precipitation. The amount of winter precipitation that forms the snow cover of Moscow has no connection with either the North Atlantic Oscillation or the Arctic Oscillation. The Moscow region is located at the intersection of the zones of influence of positive and negative phases of both cyclonic patterns (AK and NAO), which determine the weather in the Northern Hemisphere. For the winter months, a correlation between the surface air temperature and NAO (r = 0.72) and AK (r = 0.66) was established. Winter precipitation in the center of the European territory of Russiais mainly associated with the unloading of Atlantic air masses. Arctic air masses relatively rarely invade Moscow region and bring little precipitation (their contribution does not exceed 12% of the total winter precipitation).


Polar Record ◽  
1976 ◽  
Vol 18 (114) ◽  
pp. 269-277 ◽  
Author(s):  
D. M. Lavigne

The Harp Seal Pagophilus groenlandicus is a gregarious, migratory seal inhabiting Arctic and sub-Arctic waters of the North Atlantic Ocean. In spring, asthe ice recedes, the largest of three known breeding populations migrates up the east coas of Canada from the Gulf of St Lawrence, along the coast of Labrador, to the Canadian Archipelago, Hudson Bay, and the west coast of Greenland. After spending the summer feeding in Arctic waters, the seals move southward ahead of the Arctic ice pack, reaching the coast of Labrador and the Gulf of St Lawrence sometime in late December or early January. They reappear at the end of February and in early March in whelping ‘patches’ or concentrations on ice inthe Gulf of St Lawrence west of the Magdalen Islands, and off the coast of Labrador in an areaknown as the ‘Front’. One of the two smaller and probably distinct breeding populations is to be found in the White Sea, the other in the Vestisen [West Ice] between Jan Mayen and Svalbard.


2007 ◽  
Vol 22 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Nave ◽  
L. Labeyrie ◽  
J. Gherardi ◽  
N. Caillon ◽  
E. Cortijo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document