Evidence from the Dayao Paleolithic site, Inner Mongolia for human migration into arid northwest China during mid-Pleistocene interglacials

2021 ◽  
pp. 1-17
Author(s):  
Junyi Ge ◽  
Yinghua Wang ◽  
Mingchao Shan ◽  
Xingwu Feng ◽  
Fuyou Chen ◽  
...  

Abstract The Dayao Paleolithic site, located in Inner Mongolia on the eastern margin of China's vast northwestern drylands, was a lithic quarry-workshop utilized by Pleistocene human migrants through the region. Determining the age of this activity has previously yielded controversial results. Our magnetostratigraphic and OSL dating results suggest the two artifact-bearing paleosols are correlated with MIS 5 and 7, respectively. Correlating paleoclimatic data with marine δ18O records leads us to conclude that two sandy gravel layers containing many artifacts in the lower part of the Dayao sequence were formed during MIS 9 and 11, if not earlier. Our results reveal that the earliest human occupation at the Dayao site occurred before ca. 400 ka during a relatively warm and moist interglacial period, similar to several subsequent occupations, documenting the earliest and northernmost archaeological assemblage yet reported in China's arid northwest. We conclude that the northward and southward displacements of the East Asian summer monsoon rain belt during past interglacial-glacial cycles were responsible for the discontinuous human occupation detected at the Dayao site. The penetration of this precipitation regime into dryland ecologies via the Huanghe (Yellow River) Valley effectively created a corridor for hominin migration into China's arid northwest.

2014 ◽  
Vol 27 (11) ◽  
pp. 3966-3981 ◽  
Author(s):  
Chen Li ◽  
Shuanglin Li

Abstract The correlations among the summer, low-level, cross-equatorial flows (CEFs) over the Indian–west Pacific Ocean region on the interannual time scale are investigated by using both the NCEP–NCAR reanalysis and 40-yr ECMWF Re-Analysis (ERA-40) datasets. A significant negative correlation (seesaw) has been illustrated between the Somali CEF and the three CEFs north of Australia (the South China Sea, Celebes Sea, and New Guinea; they are referred to in combination as the Australian CEF). A seesaw index is thus defined with a higher (lower) value representing an intensified (weakened) Somali CEF but a weakened (intensified) Australian CEF. The connection of the seesaw with the East Asian summer monsoon (EASM) is then investigated. The results suggest that an enhanced seesaw corresponds to an intensified EASM with more rainfall in north China, the Yellow River valley, and the upper reach of the Yangtze River. The seesaw reflects the opposite covariability between the two atmospheric action centers in the Southern Hemisphere, Mascarene subtropical high, and Australian subtropical high. Whether the seesaw–EASM connection is influenced by El Niño–Southern Oscillation (ENSO) or the Indian Ocean SST dipole mode (IOD) is analyzed. The results remain unchanged when the ENSO- or IOD-related signals are excluded, although ENSO exerts a significant influence. This implies an additional predictability for the EASM from the CEF seesaw.


2014 ◽  
Vol 82 (2) ◽  
pp. 354-365 ◽  
Author(s):  
Guoqiang Li ◽  
Guanghui Dong ◽  
Lijuan Wen ◽  
Fahu Chen

AbstractIncreased flooding caused by global warming threatens the safety of coastal and river basin dwellers, but the relationship of flooding frequency, human settlement and climate change at long time scales remains unclear. Paleolithic, Neolithic and Bronze Age cultural deposits interbedded with flood sediments were found at the Shalongka site near the north bank of the upper Yellow River, northeastern Tibetan Plateau. We reconstruct the history of overbank flooding and human occupation at the Shalongka site by application of optically stimulated luminescence and radiocarbon dating, grain size, magnetic susceptibility and color reflectance analysis of overbank sediment and paleosols. The reliability of OSL dating has been confirmed by internal checks and comparing with independent 14C ages; alluvial OSL ages have shown a systematic overestimation due to poor bleaching. Our results indicate that the Yellow River episodically overflowed and reached the Shalongka site from at least ~ 16 ka and lasting until ~ 3 ka. Soil development and reduced flooding occurred at ~ 15, ~ 8.3–5.4, and after ~ 3 ka, and prehistoric populations spread to the Shalongka site area at ~ 8.3, ~ 5.4, and ~ 3 ka. We suggest that climate change influenced the overbank flooding frequency and then affected prehistoric human occupation of the Shalongka site.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 548
Author(s):  
Jinhu Yang ◽  
Qiang Zhang ◽  
Guoyang Lu ◽  
Xiaoyun Liu ◽  
Youheng Wang ◽  
...  

During the second half of the 20th century, eastern Northwest China experienced a warming and drying climate change. To determine whether this trend has continued or changed during the present century, this study systematically analyzes the characteristics of warming and dry–wet changes in eastern Northwest China based on the latest observational data and World Climate Research Programme (WCRP) Coupled Model Intercomparison Project Phase 6 (CMIP6) collection data. The results show that eastern Northwest China has warmed continuously during the past 60 years with a sudden temperature change occurring in the late 1990s. However, the temperature in the 2000s decreased slowly, and that in the 2010s showed a warming trend. The amount of precipitation began to increase in the late 1990s, which indicates a contemporary climate transition from warm-dry to warm-wet in eastern Northwest China. The contribution of precipitation to humidity is significantly more than that of temperature. Long-term and interannual variations dominate the temperature change, with the contribution of the former much stronger than that of the latter. However, interannual variation dominates the precipitation change. The warming accelerates from period to period, and the temperature spatial consistently increased during the three most recent climatic periods. The precipitation decreased from 1961–1990 to 1981–2010, whereas its spatial consistency increased from 1981–2010 to 1991–2019. The significant warming and humidification which began in the late 1990s and is expected to continue until the end of the 21st century in the medium emission scenario. However, the current sub-humid climate will not easily be changed. The warming could cause a climate transition from warm temperate to subtropical by 2040. The dry-to-wet climate transition in eastern Northwest China could be related to a synergistic enhancement of the East Asian summer monsoon and the westerly circulation. This research provides a scientific decision-making basis for implementing western development strategies, ecological protection, and high-quality development of the Yellow River Basin Area as well as that for ecological construction planning and water resource management of eastern Northwest China.


2021 ◽  
Vol 11 (6) ◽  
pp. 2799
Author(s):  
Yanping Chen ◽  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Yan Li ◽  
Liang Yi

The Huanghe River (Yellow River) is the most sediment laden river system in the world, and many efforts have been conducted to understand modern deltaic evolution in response to anthropological impacts. However, the natural background and its linkage to climatic changes are less documented in previous studies. In this work, we studied the sediments of core YDZ–3 and marine surface samples by grain-size analysis to retrieve Holocene dynamics of the Huanghe River delta in detail. The main findings are as follows: The mean value of sediment grain size of the studied core is 5.5 ± 0.9 Φ, and silt and sand contents are 5.2 ± 2.3% and 8.2 ± 5.3%, respectively, while the variance of clay particles is relatively large with an average value of 86.4 ± 8.5%. All grain-size data can be mathematically partitioned by a Weibull-based function formula, and three subgroups were identified with modal sizes of 61.1 ± 28.9 μm, 30.0 ± 23.9 μm, and 2.8 ± 1.6 μm, respectively. There are eight intervals with abrupt changes in modal size of core YDZ–3, which can be correlated to paleo-superlobe migration of the Huanghe River in the Holocene. Based on these observations, the presence of seven superlobes in the history are confirmed for the first time and their ages are well constrained in this study, including Paleo-Superlobes Lijin (6400–5280 yr BP), Huanghua (4480–4190 yr BP), Jugezhuang (3880–3660 yr BP), Shajinzi (3070–2870 yr BP), Nigu (2780–2360 yr BP), Qikou (2140–2000 yr BP), and Kenli (1940–1780 and 1700–1650 yr BP). By tuning geomorphological events to a sedimentary proxy derived from core YDZ–3 and comparing to various paleoenvironmental changes, we proposed that winter climate dominated Holocene shifts of the Huanghe River delta on millennial timescales, while summer monsoons controlled deltaic evolution on centennial timescales.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 748
Author(s):  
Ming Li ◽  
Qingsong Tian ◽  
Yan Yu ◽  
Yueyan Xu ◽  
Chongguang Li

The sustainable and efficient use of water resources has gained wide social concern, and the key point is to investigate the virtual water trade of the water-scarcity region and optimize water resources allocation. In this paper, we apply a multi-regional input-output model to analyze patterns and the spillover risks of the interprovincial virtual water trade in the Yellow River Economic Belt, China. The results show that: (1) The agriculture and supply sector as well as electricity and hot water production own the largest total water use coefficient, being high-risk water use sectors in the Yellow River Economic Belt. These two sectors also play a major role in the inflow and outflow of virtual water; (2) The overall situation of the Yellow River Economic Belt is virtual water inflow, but the pattern of virtual water trade between eastern and western provinces is quite different. Shandong, Henan, Shaanxi, and Inner Mongolia belong to the virtual water net inflow area, while the virtual water net outflow regions are concentrated in Shanxi, Gansu, Xinjiang, Ningxia, and Qinghai; (3) Due to higher water resource stress, Shandong and Shanxi suffer a higher cumulative risk through virtual water trade. Also, Shandong, Henan, and Inner Mongolia have a higher spillover risk to other provinces in the Yellow River Economic Belt.


2020 ◽  
Vol 56 (3) ◽  
pp. 422-439
Author(s):  
Guoping Wang ◽  
Yabing Li ◽  
Yingchun Han ◽  
Zhanbiao Wang ◽  
Beifang Yang ◽  
...  

AbstractThe cotton-wheat double-cropping system is widely used in the Yellow River Valley of China, but whether and how different planting patterns within cotton-wheat double-cropping systems impact heat and light use efficiency have not been well documented. A field experiment investigated the effects of the cropping system on crop productivity and the capture and use efficiency of heat and light in two fields differing in soil fertility. Three planting patterns, namely cotton intercropped with wheat (CIW), cotton directly seeded after wheat (CDW), and cotton transplanted after wheat (CTW), as well as one cotton monoculture (CM) system were used. Cotton-wheat double cropping significantly increased crop productivity and land equivalent ratios relative to the CM system in both fields. As a result of increased growing degree days (GDD), intercepted photosynthetically active radiation (IPAR), and photothermal product (PTP), the capture of light and heat in the double-cropping systems was compared with that in the CM system in both fields. With improved resource capture, the double-cropping systems exhibited a higher light and heat use efficiency according to thermal product efficiency, solar energy use efficiency (Eu), radiation use efficiency (RUE), and PTP use efficiency (PTPU). The cotton lint yield and biomass were not significantly correlated with RUE across cropping patterns, indicating that RUE does not limit cotton production. Among the double-cropping treatments, CDW had the lowest GDD, IPAR, and PTP values but the highest heat and light resource use efficiency and highest overall resource use efficiency. This good performance was even more obvious in the high-fertility field. Therefore, we encourage the expanded use of CDW in the Yellow River Valley, especially in fields with high fertility, given the high productivity and resource use efficiency of this system. Moreover, the use of agronomic practices involving a reasonably close planting density, optimized irrigation and nutrient supply, and the application of new short-season varieties of cotton or wheat can potentially enhance CDW crop yields and productivity.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 712
Author(s):  
Kaifeng Li ◽  
Wenhua Gao ◽  
Li Wu ◽  
Hainan Hu ◽  
Panpan Gong ◽  
...  

Obvious spatial expansion of human settlement occurred in the lower Yellow River floodplain during the Longshan period, but the external factors driving this expansion remain unclear. In this study, we first delineated the hydroclimatic changes at both regional and local scales within and around the lower Yellow River floodplain and then examined the relationships of human settlements with hydroclimatic settings between the pre-Longshan and Longshan periods. The results indicate that the site distribution, site density and hydroclimatic conditions exhibited significant shifts during the pre-Longshan and Longshan periods. In the pre-Longshan period, the intense East Asian summer monsoon and abundant monsoon-related precipitation caused widespread development of lakes and marshes in the lower Yellow River floodplain. As a result, the circumjacent highlands of the lower Yellow River floodplain contained concentrated human settlements. However, the persistent weakening of the East Asian summer monsoon and consequent precipitation decline, in conjunction with accelerated soil erosion due to decreasing forest vegetation and strengthening of human activities on the upstream Loess Plateau in the Longshan period, are likely to have jointly caused both shrinking and faster filling of preexisting lakes and marshes. Subsequently, a large area of arable land had been created in the lower Yellow River floodplain and thus was occupied by locally rapid increasing population, resulting in the notable spatial expansion of human settlements during the Longshan period.


Sign in / Sign up

Export Citation Format

Share Document